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ABSTRACT

Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines
of ecological and evolutionary inquiry, including functional morphology, compara-
tive biology, community ecology and niche theory. However, extant methods to
sample from hypervolumes or measure their geometry perform poorly on high-
dimensional or holey datasets.

Innovation We first highlight the conceptual and computational issues that have
prevented a more direct approach to measuring hypervolumes. Next, we present a
new multivariate kernel density estimation method that resolves many of these
problems in an arbitrary number of dimensions.

Main conclusions We show that our method (implemented as the
‘hypervolume’ R package) can match several extant methods for hypervolume
geometry and species distribution modelling. Tools to quantify high-dimensional
ecological hypervolumes will enable a wide range of fundamental descriptive, infer-
ential and comparative questions to be addressed.
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INTRODUCTION

Hutchinson first proposed the n-dimensional hypervolume to

quantify species niches (Hutchinson, 1957). In this approach, a

set of n variables that represent biologically important and inde-

pendent axes are identified and the hypervolume is defined by a

set of points within this n-dimensional space that reflects suit-

able values of the variables (e.g. temperature or food size). The

hypervolume concept of the niche is widely used in comparative

biology (Pigliucci, 2007) and evolutionary biology (e.g. fitness

landscapes; Gavrilets, 2004). Within ecology it can be applied

beyond the quantification of species niches (Violle & Jiang,

2009), for instance to quantify the multivariate space of a com-

munity or a regional pool (Ricklefs & O’Rourke, 1975; Foote,

1997), to measure morphology (Raup & Michelson, 1965) or to

test functional ecology hypotheses (Albert et al., 2010; Baraloto

et al., 2012; Boucher et al., 2013).

The use of hypervolumes in biology arises through the reso-

lution of three related mathematical questions that are inde-

pendent of scale and axis choice. The first question is about the

geometry of the hypervolume. Given a set of observations, what

can be inferred about the overall shape of the hypervolume, its

total volume and the presence or absence of holes? This ques-

tion is relevant to topics including environmental or trait filter-

ing in community assembly (Whittaker & Niering, 1965),

forbidden trait combinations in physiological ecology and evo-

lutionary biology (Wright, 1932; Maynard-Smith et al., 1985)

and climate breadths in invasion ecology (Petitpierre et al.,

2012). A second question about set operations can then be

addressed for multiple hypervolumes whose geometry is

known. How much do hypervolumes overlap, and what portion

of each is unique? These questions are relevant to topics includ-

ing competitive exclusion (May & MacArthur, 1972; Tilman,

1982; Abrams, 1983), species packing (Findley, 1973; Pacala &

Roughgarden, 1982; Ricklefs & Miles, 1994; Tilman et al., 1997)

and functional redundancy within communities (Petchey

et al., 2007). The third question is about sampling from the

n-dimensional space. Is a candidate point in or out of the

hypervolume? Sampling questions are equivalent to species dis-

tribution modelling (Elith & Leathwick, 2009; Peterson et al.,

2011), an approach in which a set of geographic points are

projected into hyperspace, those points are determined to be in

or out of the hypervolume, and are then back-projected into

geographic space as range maps.
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While these three mathematical questions integrate a wide

range of topics, they have not traditionally been considered in a

unified framework. Indeed, independent methods have been

developed for each of the above questions. For example, the

geometry question has typically been addressed using volume-

estimation methods such as a convex hull (Cornwell et al.,

2006). The question on set operations has been primarily

addressed using a range of overlap indices (Mouillot et al., 2005;

Villéger et al., 2008; Warren et al., 2008). The sample question

has mostly been addressed using predictive modelling tech-

niques [e.g. generalized linear models (GLM), generalized

boosted regression models (GBM), or MaxEnt (Elith et al., 2006;

Wisz et al., 2008)]. However, methods that are successful for one

question may not be directly transferrable to the other ques-

tions. For example, the sampling question can be resolved

without delineating all the boundaries of a hypervolume (i.e.

sampling the entire hyperspace). While resolving the geometry

and set operation questions would effectively resolve the sam-

pling question, existing approaches have been limited.

Here we argue that these three major questions can be

addressed with a unified approach to infer hypervolumes from

observations. Further, we highlight the key conceptual and

dimensional issues that have previously limited the develop-

ment of such approaches. We then propose a new method – a

thresholded multivariate kernel density method – that can sim-

ultaneously address each of these questions. We show that our

method matches extant methods for all three questions but can

also be applied in high dimensions. We demonstrate the method

with a simulation analysis and with two examples: the morpho-

logical hypervolume overlap of Darwin’s finches, and climate

hypervolume and geographic range projections of two Quercus

species.

Extant methods have conceptual limitations

The general mathematical problem is how to best estimate a

hypervolume from a set of observations. Ideally, an estimation

procedure should: (1) directly delineate the boundaries of the

hypervolume; (2) not assume a fixed distribution of observa-

tions; (3) account for disjunctions or holes; (4) not be sensitive

to outlier points; and (5) produce a bounded result (i.e. not

predict infinite volumes).

Using these criteria, many extant methods fall short (Fig. 1).

For example, principal component analysis (e.g. Ricklefs &

Travis, 1980), although intuitively appealing, assumes that the

hypervolume is multivariate normal, violating procedure (2)

above. Many empirical datasets indicate that even single-

dimensional responses often deviate strongly from normality

(Austin et al., 1984) via high skewness or multiple modes that

cannot be removed by transformation. Multivariate range boxes

(e.g. Hutchinson, 1957) are also inappropriate because they

assume that the hypervolume is multivariate uniform and with

box axes aligned to coordinate axes, also violating procedure (2).

Other ordination approaches (e.g. outlying means index (OMI);

Doledec et al., 2000) have similar distributional limitations or

may be better suited for discrimination than geometric applica-

tions (Green, 1971). While a convex hull (Cornwell et al., 2006)

and other envelope methods (Nix, 1986) are distribution-free

approaches that can provide a closer measurement of the

hypervolume, they are sensitive to outlier points. As a result,

estimates of the shape of the hypervolume using convex hulls

can result in errors in measurements of volume and shape. More

importantly, none of these three methods can model disjunc-

tions or holes in the hypervolume, complicating the assessment

of hypervolume overlap (see discussion below). A potentially

more robust approach is to fit different functions to each

hypervolume dimension (e.g. Gaussian mixture models;

Laughlin et al., 2012); however, this method requires some

choices to be made about the nature of the fitting function and

results in an estimated hypervolume that may not include inter-

actions or covariation between dimensions.

While species distribution models (SDMs) provide multiple

algorithms for sampling that can capture many of these

nonlinearities, none of these methods permit delineation of

the entire hypervolume. This is because SDMs are intended

primarily for sampling points from the entire environmental

space (i.e. transformed geographic coordinates), which is

computationally simpler than delineating boundaries of the

environmental space. Below we discuss the sampling versus

delineation problem in more depth. Additionally, SDMs may

generate environmental hypervolumes with unbounded

volumes, because they may predict that all values along an axis

greater/smaller than some threshold value are within the

hypervolume (Peterson et al., 2011).

a b c d e

Figure 1 A robust operational definition of the hypervolume is important for making correct inferences. Here we show an example of
three poor definitions (b–d) and one accurate definition (e). (a) Consider a two-dimensional dataset describing a hypothetical ‘Swiss
cheese’ hypervolume. (b) A two-dimensional range box fails to capture the rotation and holes in the hypervolume. (c) A principal
components analysis has difficulties with non-normal data and does not account for the holes. (d) A convex hull also does not account for
holes and is very sensitive to outlying points. (e) The best solution is to take the area enclosed by a contour of a kernel density estimate,
which can account for non-normal, rotated and holey data including outliers. Some species distribution modelling approaches (e.g.
generalized boosted regression models) can also approximate this shape.
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Lastly, there are extant metrics and indices for different prop-

erties of the hypervolume, including breadth and overlap

(Maguire, 1967; Colwell & Futuyma, 1971; Hurlbert, 1978;

Abrams, 1980). However, these approaches do not give direct

insight into the geometry and topology of the hypervolume that

are needed for many current research questions. As a result,

more powerful methods to measure and compare hypervolumes

in biology are needed.

High dimensions are different (and harder)

The geometry of a high-dimensional hypervolume may differ

qualitatively from a low-dimensional hypervolume in ways that

have not been adequately considered, because human intuition

is best suited for low-dimensional (n = 1–3) systems. High-

dimensional biological hypervolumes are probably not smooth

continuous shapes but rather rugged or filled with gaps or holes

(Colwell & Futuyma, 1971; May & MacArthur, 1972; Hurlbert,

1978; Abrams, 1980; Jackson & Overpeck, 2000). For example,

the recognition that most high-dimensional fitness landscapes

are ‘holey’ has provided many advances in understanding

evolutionary dynamics (Gavrilets, 1997; Salazar-Ciudad &

Marin-Riera, 2013). While fundamental niches are often

thought to have simpler and less holey geometry than realized

niches (Colwell & Rangel, 2009; Araujo & Peterson, 2012), data

limitations have precluded robust tests of this idea. Moreover,

all distance-based SDMs (e.g. DOMAIN) are limited by the

assumption of no holes. We argue that there should be no

a priori reason to assume that a hypervolume (or niche) should

be normally or uniformly distributed in multiple dimensions.

Many geometric questions have been pursued exclusively

with low-dimensionality analyses (Broennimann et al., 2012;

Petitpierre et al., 2012). However, some hypervolumes may be

better analysed in higher dimensions. Though the number of

axes necessary to describe any system can be debated, there is no

reason to believe that two or three dimensions are sufficient for

most systems.

In community ecology, trait axes are often implicitly used as

proxies for niche axes (Westoby et al., 2002). Currently a focus

on measures of single traits as a metric of position along a niche

axis is widespread in trait-based ecology and evolution. The goal

of this work is to track assembly processes by analysing the

distribution of a single trait (e.g. body size) within and between

ecological communities. However, evidence suggests that com-

munity assembly is driven by integrated phenotypes rather than

by single traits (Bonser, 2006), meaning that a hypervolume

approach to community assembly may be more relevant.

Delineating high-dimensional hypervolumes using existing

approaches is difficult. For example, quantifying a hypervolume

with arbitrarily complex geometry requires that the entire

hyperspace must be sampled. In low dimensions, this is simple.

The geometry of a one-dimensional hypervolume can be

defined by determining if each of g regularly spaced points in

an interval is in or out. However, for increasingly higher-

dimensional hypervolumes this procedure must be repeated

independently in each dimension, requiring gn evaluations. For

example, characterizing a hypervolume where g = 500 and n = 3

requires more than 108 evaluations; for n = 10 dimensions, it is

more than 1026 evaluations. As a result, exhaustive sampling

approaches are too computationally demanding to be practical.

Thus, robust methods from species distribution modelling have

not been useful for delineating hypervolumes. Developing new

methods that can handle high-dimensional datasets will remove

the limitations of these extant estimation procedures.

METHODS

Measuring the hypervolume is now possible

Direct estimation of the n-dimensional hypervolume from a set

of observations w can be achieved by a multidimensional kernel

density estimation (KDE) procedure. While kernel density

approaches for hypervolume delineation have been successfully

used in low-dimensional systems (Broennimann et al., 2012;

Petitpierre et al., 2012), they had not previously been compu-

tationally feasible in high dimensions.Similarly,other fast kernel-

based approaches such as support vector machines (Guo et al.,

2005) work in transformed high-dimensional spaces but had not

been directly applied to geometry questions, as we show here. We

now outline the KDE approach and propose a method that can

resolve the sampling problem in high dimensions.

We formally define the hypervolume, z, as a set of points

within an n-dimensional real-valued continuous space that

encloses a set of m observations, w. The problem is to infer z

from w. We start by assuming that w is a sample of some distri-

bution Z, of which z is a uniformly random sample. Next, we

compute a kernel density estimate of Z, Ẑ, using the observa-

tions w and bandwidth vector
�
h. Lastly, we choose a quantile

threshold parameter τ ∈ [0,1]. As a result, z can be defined as a

set of points enclosed by a contour of Ẑ containing a fraction

1 – τ of the total probability density. We illustrate this procedure

graphically in Fig. 2.

We describe methods to perform this kernel density estima-

tion of a hypervolume z for both large n and m. The computa-

tional problems associated for scaling up this method can be

solved with importance-sampling Monte Carlo integration. The

resulting algorithms can determine the shape, volume, intersec-

tion (overlap), union and set difference of hypervolumes. They

can also perform sampling (i.e. species distribution modelling)

via inclusion tests in order to determine if a given n-dimensional

point is enclosed within a hypervolume or not (Fig. 3). Together,

these tools make it possible to directly address our three major

questions and move beyond metrics that provide incomplete

descriptions of hypervolumes in high dimensions. We describe

the algorithms conceptually in Box 1 and in full mathematical

depth in Box 2. The software is freely available as an R package

(‘hypervolume’), with full documentation and several example

analyses, including those presented in this paper.

Usage guidelines and caveats

To ensure that hypervolume analyses are replicable, we recom-

mend reporting the chosen bandwidth
�
h (or the algorithm used

The n-dimensional hypervolume
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to choose it) and the quantile τ obtained by the algorithm

(which may differ slightly from the specified quantile due to

some discrete approximations in the algorithm; see Box 2).

There are several issues that should be considered before an

investigator applies this hypervolume method. First, our

approach is best suited for continuous variables. Categorical

variables are problematic because a volume is not well defined

when the same distance function cannot be defined for all axes.

If it is necessary to use categorical variables, the data can first be

ordinated into fewer dimensions using other approaches (e.g.

the Gower distance; Gower, 1971). We acknowledge that cat-

egorical variables are often biologically relevant, and wish to

Box 1
A cartoon guide to the hypervolume algorithms

We present an example of hypervolume creation and set operations to develop the reader’s conceptual understanding of how the

algorithms are implemented. For clarity, the example is drawn in n = 2 dimensions but the algorithms generalize to an arbitrary

number of dimensions.

Creation

The algorithm proceeds by (a) computing an n-dimensional kernel density estimate by overlaying hyperbox kernels (gray boxes)

around each observation (black dots), (b) sampling from these kernels randomly (gray dots), (c) importance-sampling the space using

these boxes and performing range tests on random points using a recursive partitioning tree (rainbow colours are proportional to

kernel density) then (d) applying a threshold that encloses a specified quantile of the total probability mass, retaining only points

within the resulting volume and then using combined properties of the kernel and importance-sample to subsample the random

points to a uniform point density (purple dots). These uniform-density points, along with the known point density and volume,

constitute the full stochastic description of the hypervolume. The key advance of the algorithm is to develop efficient approaches for

importance-sampling high-dimensional spaces using box kernels and recursive partitioning trees, as described in depth in Box 2.

Set operations

Uniformly random points in an n-dimensional space are likely to be separated by a characteristic distance. The algorithm uses a

n-ball test with this distance on the candidate point relative to the hypervolume’s random points. If at least one random point in the

hypervolume is within the characteristic distance of the candidate point, then the point satisfies the inclusion test. An example is

shown here as a zoom from the full hypervolume intersection. The algorithm uses this inclusion test to determine which random

points in the first hypervolume are and are not enclosed within the second hypervolume, and vice versa. The intersection is inferred

to include the points that satisfy both inclusion tests. The unique component of the first hypervolume is inferred to include the

points that do not satisfy the first inclusion test, and vice versa for the unique component of the second hypervolume. The union

is inferred to include the unique components of both hypervolumes and the intersection (as calculated above). In all cases the

resulting random points are resampled to uniform density and used to infer a new point density and volume. (e) An example is

shown of overlap between two hypervolumes. Each hypervolume’s random uniformly sampled points are coloured as green or

purple, and a ball of the appropriate radius is drawn around each point. Points that have overlapping balls (coloured blue) are

inferred to constitute the intersection. (f) A zoom of the boxed region in (e).

a b c d

e f
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Box 2
Mathematical description of the hypervolume algorithms

Hypervolume construction
For a hypervolume z and measurements w, we perform the kernel density estimation and volume measurement using a Monte Carlo

importance sampling approach. Suppose we are given a set of m points w = {w1, . . . , wm} ∈ ℜn drawn from an unknown probability

distribution Z, a kernel k, a threshold τ, and an r-fold replication parameter corresponding to the number of Monte Carlo samples.

We wish to find the volume of z and return a set of uniformly random points II with point density π from within z.

The idea is to choose a space P (such that Z ⊂ P ⊂ ℜn) and randomly sample points II = {p1, . . ., pr} ⊂ P. At each point pi
���

, evaluate

the kernel density estimate

Ẑ p k
p wj

h
i

i

j

m���
��� ���

�( ) = −⎛
⎝⎜

⎞
⎠⎟=

∑α
1

where vector division indicates division in each dimension independently and α is a normalization constant. Now flag the indices

i i Z p qs i1, , :…
���( ) ( ) >ˆ for the q that satisfies

ˆ ˆ .Z p Z pi

i

i

i

��� ���( ) ≥ ( )
{ } { }
∑ ∑τ

If the volume of z is |z| and the volume of P is |P|, then

lim
x

i

is
Z p

z

P→∞
{ }

( ) =∑1 ˆ .
���

That is, the ratio of the sum of the kernel density estimates to the number of sampled points converges to the ratio of the true volume

to the volume of the sampled space.

We assume an axis-aligned box kernel,

k x
x e ni i�
� �

…
( ) =

⋅ < ∀ ∈{ }1 1 2 1

0

: , , ,

: otherwise

where
�
ei is the ith Euclidean unit vector. The proportionality constant is now

α =
⋅

=∏
1

1
m h ei

i

n � �

The kernel bandwidth vector
�
h can be specified by the investigator. Alternatively, it can be chosen quasi-optimally using a Silverman

bandwidth estimator for one-dimensional normal data as

� �
h n ei i

i

n

= ( )
=
∑2 4 3 1 5

1

σ

where σ is the standard deviation of points in w in the ith dimension:

σ μ μi k i i

k

m

i j i

j

m

m
w e

m
w e= ⋅ −( ) = ⋅

= =
∑ ∑1 12

1 1

� � � �
, .

We choose this kernel representation because (1) it reaches zero in a finite distance and (2) has constant non-zero value, enabling

the evaluation of the kernel density estimate to be reduced to a counting problem.

In practice, random sampling of P is impractical because most regions of a high-dimensional space are likely to be empty. Instead,

we proceed by importance sampling. Because of the choice of k, we know that Z has non-zero probability density only within regions

that are within an axis-aligned box (with widths given by hi) surrounding each point wj, i.e.

P p i n p w e hk k j i i

j

m

= ∀ ∈{ } −( )⋅ <
⎧
⎨
⎩

⎫
⎬
⎭=

: , , , .1
1

…
��� � �� ��∪

We therefore generate a uniformly random set of points drawn only from axis-aligned boxes centred around each wj, each of which

has point density

π =
=∏

r

m hi
i

n

1

.
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This process yields

Π = − +( )⎧
⎨
⎩

⎫
⎬
⎭==

U w h w hi i

j

r m

i

m ��� � ��� �
∪∪ ,

11

where U(a, b) represents a single draw from the uniform distribution scaled to the interval (a, b).

However each axis-aligned box may intersect with multiple other axis-aligned boxes, so ∏ is not uniformly random. Our next step

is therefore to determine which random points pi
��� ∈Π fall within regions of Ẑ with higher probability density and correct for their

oversampling. Because of the choice of k, we know that each pi
���

has a kernel density Ẑ pi
���( ) estimate proportional to the number of

data points whose kernels (i.e. axis-aligned boxes) intersect this pi
���

. We build an n-dimensional recursive partitioning tree T from

the data points w. Then for each pi
���

, we perform a range-box query on T, where the range is chosen to be
�
h, and count the number

of non-zero returns, which is proportional to Ẑ pi
���( ).

Each point is now over-sampled by a factor proportional to 1 Ẑ pi
���( ) , yielding an effective number of sampled points given by

ρ =
( )=

∑ 1

1
ˆ .
Z pii

r

���

The total volume of z is therefore the original point density divided by the effective number of points, or

z = π
ρ

.

Finally we obtain a uniformly random sample of points from z, ∏*, by sampling σ points from ∏, weighting each point by 1 Ẑ pi
���( )

and retaining only the ρ* unique points r*
���

, where σ = π|z| reflects the original uniformly sampled point density. We then calculate

the final point density π* as π* = ρ*/|z|.

Inclusion test

Consider a set of n-dimensional points p pi a= { } ∈��� Π* with point density πa*. We wish to determine if a point X j

� ��
is within the

volume sampled by Πa*. The characteristic distance between uniformly random points is d a
n= −( *)π 1 ; this means that X j

� ��
is likely

to be within Πa* if ∃ − <i p x di j:
��� ���

. This is implemented by a ball test using an n-dimensional recursive partitioning tree built from

points in Πa*.

Hypervolume set operations (intersection, union, unique subset)

Consider two hypervolumes za and zb described by volumes |za| and |zb|, uniformly random point samples Πa* and Πb*, and point

densities πa* and πb*. We wish to find zc = za ∩zb as described by |zc|, Πc*, and πc*. First, both za and zb are uniformly randomly

sampled to a point density of π ρ π πc a b= ,min( *, *), where ρ is a user-specified value (using high point densities can be

computationally costly but not necessarily significantly more accurate), yielding ma and mb random points respectively in each

hypervolume. Then we use the inclusion test (described above) to find the set of points contained in both za and zb by identifying

the rab, random points in za enclosed by zb(∏ab), and the rba random points in zb, enclosed by za (∏ba). We calculate the final volume

conservatively as the number of points divided by the point density,

z r rc
c

ab ba= ( )1

π
min , .

The uniformly random sample of points in zc is then Π Π Πc ab ba* = ∪ and the final point density is π πc c* = 2 .

We also wish to characterize the union and unique components of these hypervolumes, zunion and zun a and zun b. We apply the

intersection algorithm (described above) to subsample Πa* and Πb* to the same point density πint* , then to find the intersection

hypervolume zint, and also to flag the points not in each hypervolume, c zab a b= ∉Π* , and c zba b a= ∉Π* . We then determine the final

volume as |zunion| = |za| + |zb| − |zint|. The random sample of points is Π Πunion int* *= c cab ba∪ ∪ and the final point density is π πunion int* *= .

We take a similar approach using the flagged points in one hypervolume and not the other to determine the unique components of

each hypervolume.

B. Blonder et al.
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highlight this issue as a major unavoidable limitation of the

hypervolume concept that also applies to the other methods

discussed.

Missing data may restrict the dimensionality of the analysis.

Any observation with at least one missing variable cannot be

used for hypervolume estimation because an n-dimensional

object is not well defined in fewer than n dimensions. In these

situations it will be necessary to remove observations with

missing values, reduce the dimensionality of the analysis or fill

in missing data values via some other approach, for example

multiple imputation (Rubin, 1996) or hierarchical probabilistic

matrix factorization (Shan et al., 2012).

Choosing comparable units for each axis is critical. Because

volume scales with the product of the units of all dimensions it

can be difficult to ascribe a change in volume to one axis if units

are not comparable. Similarly, non-comparable dimensions

mean that results would not be invariant to changes of units and

or scale (e.g. redefining an axis in millimetres instead of metres).

Thus the observational data must be normalized (e.g. using

z-scores or log-transformation) before the hypervolume

method can be applied. The units of the output hypervolume

will therefore be the product of axis units [e.g. in powers of

standard deviations (SDs) or logarithmic units].

It is important to clearly identify appropriate and biologically

relevant axes. For example, it may be unclear what variables

should and should not be included in an analysis, and how

sensitive a given result may be to this choice (Petchey & Gaston,

2006; Bernhardt-Römermann et al., 2008). Inclusion of dimen-

sions with limited or highly correlated variation will produce

degenerate results, such that the hypervolume is effectively

constrained to a hyperplane (Van Valen, 1974). These problems

can be identified by high variance in the SDs of each dimension

or by high Pearson correlation coefficients between each

pair of dimensions. Additionally, choice of the number of

dimensions to include may also influence results. For example,

hypervolumes that appear to overlap in low dimensions may not

overlap if more dimensions are added, and conversely, with the

addition of extra redundant dimensions, estimates of overlap

may be falsely inflated. Nonetheless, we do expect that

hypervolume metrics should be comparable across datasets with

identical axes.

Sampling issues also deserve careful consideration. The

hypervolume approach assumes that the input set of observa-

tions is an unbiased sample of the actual distribution. Meeting

-5 0 5 10

0%

25%

50%

75%
P

ro
ba

bi
lit

y

Niche axis value

Figure 2 Illustration of the hypervolume estimation procedure.
Consider a one-dimensional set of observations, assumed to be a
sample from a probability distribution. Estimate this distribution
with a kernel density estimate. Slice (subset) the distribution at
different probability levels until at least chosen fraction 1 – τ of
the probability density is enclosed by the distribution. The
estimated hypervolume is then defined by the axis values of this
subset (e.g. Fig. 1e; here shown in black for several values of
τ where hypervolumes for each probability fraction are
colour-coded where hotter colours include cooler ones). The
kernel density estimation and slicing process can naturally be
extended to multiple dimensions using importance-sampling
Monte Carlo methods described conceptually in Box 1 and in
detail in Box 2.

a b

c d

e f

Figure 3 Hypervolume geometry operations. From two sets of
observations (red and blue) (a), hypervolumes can be created (b),
enabling measurement of shape and volume. (c) The total volume
occupied by two hypervolumes can be determined as the union of
both hypervolumes. (d) Overlap can be measured after finding the
intersection between two hypervolumes. (e) The components of
each hypervolume that are unique can be identified by set
difference operations. (f) An inclusion test can determine if a
given point is found within a hypervolume, and enable sampling
applications such as species distribution modelling.

The n-dimensional hypervolume
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this assumption may be difficult, depending on the methodol-

ogy used for data collection. Unavoidable spatial and taxonomic

biases can conflate the occurrence and observation processes in

real-world datasets. For example, realized climate niches of

species may be oversampled in easily accessed regions and

undersampled regions that are more difficult to access. This will

lead to incorrect inference of holes. While these biases are

common to all niche modelling algorithms (Phillips et al.,

2009), the kernel density approach used in our method may be

more prone to overfitting the data.

Our method can be used with any number of observations

regardless of dimensionality. However, analyses with few obser-

vations (m/n < 10, as a rough guideline) will be very sensitive to

the choice of bandwidth and are not recommended. For

example, the volume inferred for a single point is necessarily

equal to the product of the kernel bandwidth along each axis

and is not biologically relevant. In general, choosing a smaller

bandwidth (or large threshold) will lead to a smaller

hypervolume, with each observation appearing disjoint from

others, while choosing a larger bandwidth (or small threshold)

for the same dataset will lead to a larger volume with more

observations appearing to be connected. The investigator must

thus carefully consider and potentially standardize the choice of

bandwidth and threshold for the hypervolume construction

process. A bandwidth can be estimated from the data using a

quasi-optimal approach (e.g. a Silverman estimator; Silverman,

1992) that pads each observation by an amount that depends on

the number of available observations and the total range of

variation between observations (reflecting an increasing level of

confidence that the observations have sampled the extreme

boundaries of the hypervolume).

RESULTS

Application to simulated data

Dataset choice

We next compared our approach with other extant methods

using simulated data of a variety of complexities, dimen-

sionalities (n), and number of unique observations (m). We

constructed two test datasets of varying complexity. The first

dataset, TC, is defined by m samples from a single n dimensional

hypercube (Fig. 4a):

T m n x i m H x nj jC , : , , , ,( ) = ∀ ∈( ) ( ) ={ }�
…

�
1 1

where H is the hypercube function

H x n
x i ni� …

,
. , ,

.( ) =
< ∀ ∈( ){1 0 5 1

0 otherwise

The second dataset, TDC, is defined by m samples from double

n-dimensional hypercubes, each offset from the origin by two

units (Fig. 4b):
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Figure 4 Hypervolume geometric
analysis of simulated data. (a) Data
sampled from a hypothetical single
hypercube (TC) dataset. (b) Data
sampled from a hypothetical double
hypercube (TDC) dataset, with each
hypercube offset by two units from the
origin in all axes. In (a) and (b), data
are shown at the same scale in two
dimensions for clarity but were
simulated in up to eight dimensions for
the analyses. (c) Comparison of volumes
estimated by different methods
(hypervolume, minimum volume
ellipsoid, range box, convex hull) for the
TC dataset. Each boxplot represents the
distribution of volumes inferred from 10
independent samples of m points from a
n-dimensional dataset. Boxes that are
closer to the black line (the true volume)
indicate better methods. The y-axis is
log-transformed and normalized by n to
reflect the geometric scaling of volume
with dimension. (d) Comparison of
volumes for the TDC dataset.
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In the first example, TC or volume 1 is intended to represent a

simple hypervolume that other methods should easily estimate,

while in the second example, TDC or volume 2 is intended to

represent a complex disjoint hypervolume that may challenge

extant methods. For each example, we generated 10 indepen-

dently sampled test datasets for each parameter combination

of m = 10, 100 and 1000 observations and n = 2, 4, 6 and 8

dimensions.

Geometric application

We estimated the volume of each dataset using our method and

a range of alternatives: range boxes, minimum volume ellipsoids

(similar to a principal components analysis) and a convex hull,

and compared results with the known volume of each dataset.

Hypervolumes were inferred using a Silverman bandwidth esti-

mator and a quantile threshold of 0.5.

We found that, for the TC dataset, the range box, convex hull

and hypervolume methods consistently performed well, but the

minimum volume ellipsoid method consistently overestimated

volumes (Fig. 4c). This result indicates that the hypervolume

method performs well in comparison with extant volume esti-

mation methods for simple datasets. However, for the disjoint

TDC dataset we found that the minimum volume ellipsoid and

range box consistently overestimated volumes. The convex hull

performed best and the hypervolume method performed

second best when the sampling effort was high (large m)

(Fig. 4d). Nevertheless, unlike the convex hull and minimum

volume ellipsoid methods, the results of our hypervolume

method were consistent regardless of dimension. This result

indicates that our approach provides a viable consistent tool for

estimating the volume of complex hypervolumes. The overesti-

mation of volume is not necessarily a problem, and arises

because (as previously discussed) the hypervolume method esti-

mates volumes that are due to the choice of kernel bandwidth

specified by the researcher.

Sampling application

We next tested the ability of multiple methods to predict pres-

ences and absences, using the same test datasets and combina-

tions of dimensions and observations as described above. We

compared the hypervolume method with two common and

high-performing species distribution modelling algorithms:

GLM and GBM (Wisz et al., 2008). We did not evaluate MaxEnt

because it is formally equivalent to a GLM (Renner & Warton,

2013). For both GBM and GLM we used fixed thresholds of 0.5

to convert predictions to binary presence/absences, mirroring

the threshold used for the hypervolume method. Although more

robust approaches are available for determining threshold

values (Peterson et al., 2011), this simple approach enables us to

facilitate comparisons between all of the methods under equally

challenging conditions.

The hypervolume method works using only presence data.

For the GLM/GBM approaches, we built models using pseudo-

absences obtained by sampling from a hyperspace consisting of

the region
� �
x H x nk k: ( , )6 1={ }, i.e. the hypercube spanning

(–3,3) in each axis. We then generated a set of n-dimensional test

points, half of which were known to be in the analytically

defined hypervolume and half of which were known to be

outside it. Next, we used each model to make predictions for

these points, and then computed two metrics to compare the

performance of each model: sensitivity, which measures the true

positive rate for predictions, and specificity, which measures the

true negative rate for predictions. Better-performing methods

have sensitivities and specificities closer to one.

We found that for the simpler TC dataset, the hypervolume and

GBM methods had equivalent perfect sensitivity, with the GLM

method showing lower sensitivity for large values of m (Fig. 5a).

The hypervolume and GBM methods showed higher specificities

than the GLM method, with the hypervolume method perform-

ing best for smaller values of m (Fig. 5b). For the more challeng-

ing TDC dataset, the hypervolume method had similar sensitivity

to the GBM model regardless of m (Fig. 5c) but clearly outper-

formed the GBM model in high dimensions. Additionally, the

hypervolume method had consistently higher specificity than the

other approaches regardless of m or n (Fig. 5d).

Together, these results indicate that the hypervolume method

not only compares favourably with other species distribution

modelling methods for simple geometries, but can outperform

other methods when the dataset being measured has a complex

geometry (e.g. high specificity). While these preliminary results

are limited in their scope, they do suggest that the hypervolume

method also should be considered as a viable candidate for

predicting species distributions.

Application to real-world data

We next show two applications of our approach using real data.

Code and data to duplicate these analyses are included as dem-

onstrations within the R package.

First, we present a demonstration analysis of the nine-

dimensional morphological hypervolumes of two species of

Darwin’s finches (Box 3). A prominent hypothesis for these

birds, stemming from Darwin’s original observations, is that

species co-occurring on the same islands would have experi-

enced strong resource competition and character displacement,

and therefore should have evolved to occupy non-overlapping

regions of morphospace (Brown & Wilson, 1956). We tested this

hypothesis on Isabela Island with data from the Snodgrass–

Heller expedition (Snodgrass & Heller, 1904). We used log10-

transformed nine-dimensional data to construct hypervolumes

for the five species with at least 10 complete observations.

Hypervolumes were constructed using a Silverman bandwidth

estimator and a quantile threshold of 0%. We found that of the

possible
5

2
10⎛

⎝⎜
⎞
⎠⎟ = overlaps, only two species pairs had non-zero

fractional overlaps: less than 1% between Geospiza fuliginosa

parvula and Geospiza prosthemelas prosthemelas, and 11%

The n-dimensional hypervolume
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between Geospiza fortis fortis and Geospiza fortis platyrhyncha.

Thus, the original hypothesis of character displacement cannot

be rejected except perhaps in two cases of weak overlap, of which

one case applied to two very closely related subspecies. In con-

trast, a single-trait analysis would reject the hypothesis, leading

to very different biological inferences. Note also that this

hypothesis could be tested at the community level, comparing

the union of all morphological hypervolumes of all species on

each island.

Second, we present a four-dimensional analysis of the climate

hypervolumes of two closely related oak species that are common

in the eastern United States, Quercus alba and Quercus rubra (Box

4). We tested the hypothesis that the species occupying a larger

region of climate space would also have a larger geographic range.

We obtained occurrence data for each species from the BIEN

database (http://bien.nceas.ucsb.edu/bien/) and transformed

these to climate values using four main WorldClim layers: BIO1,

mean annual temperature; BIO4, temperature seasonality;

BIO12, mean annual precipitation; and BIO15, precipitation

seasonality (Hijmans et al., 2005). Each climate layer was trans-

formed relative to its global mean and SD before analysis;

hypervolumes were then constructed using a Silverman band-

width estimator and a 0% quantile threshold. We found that

Q. alba had a smaller volume [0.13 standard deviations (SD4)]

compared with Q. rubra (0.15 SD4). We then used the

hypervolume method for a sampling application, projecting each

of these climate hypervolumes into geographic space. We found

that Q. alba also had a smaller range (9097 vs. 11,343 10-arcmin

pixels), supporting the original hypothesis and consistent with

expert-drawn range maps (Little, 1977). Returning to the climate

hyperspace, we then identified the unique (and sometimes dis-

joint) regions of the Q. rubra climate hypervolume that contrib-

uted to this larger volume. In fact, Q. rubra contributed more

than twice as much unique volume as Q. alba (0.04 vs 0.02 SD4)

to the combined hypervolumes of both species.

DISCUSSION

The future of the hypervolume

Our approach can unify several previously separate lines of eco-

logical inquiry through direct measurement of hypervolumes.

Our demonstration analyses provide preliminary evidence that

this new approach can perform as well as several existing

approaches, and can also enable new types of analyses.

The application of this method to species distribution mod-

elling, while exciting, is preliminary. An advantage of our

hypervolume approach is that it is conceptually simple, does

not require absence or pseudo-absence data and enables

hypervolume geometry to be simultaneously measured. More-

over, the method performed well in our initial tests. We therefore

suggest that the method warrants further comparison with

other approaches (e.g. Elith et al., 2006).

The development of our method also highlights several issues

that are relevant to hypervolume-related inquiry. First, there

has so far been limited understanding of the properties of real

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
en

si
tiv

ity
 −

 c
ub

e

n=
2 

m
=

10

n=
4 

m
=

10

n=
6 

m
=

10

n=
8 

m
=

10

n=
2 

m
=

10
0

n=
4 

m
=

10
0

n=
6 

m
=

10
0

n=
8 

m
=

10
0

n=
2 

m
=

10
00

n=
4 

m
=

10
00

n=
6 

m
=

10
00

n=
8 

m
=

10
00

Hypervolume
GLM
GBM

a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
pe

ci
fic

ity
 −

 c
ub

e

n=
2 

m
=

10

n=
4 

m
=

10

n=
6 

m
=

10

n=
8 

m
=

10

n=
2 

m
=

10
0

n=
4 

m
=

10
0

n=
6 

m
=

10
0

n=
8 

m
=

10
0

n=
2 

m
=

10
00

n=
4 

m
=

10
00

n=
6 

m
=

10
00

n=
8 

m
=

10
00

b

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
en

si
tiv

ity
 −

 d
ou

bl
e 

cu
be

n=
2 

m
=

10

n=
4 

m
=

10

n=
6 

m
=

10

n=
8 

m
=

10

n=
2 

m
=

10
0

n=
4 

m
=

10
0

n=
6 

m
=

10
0

n=
8 

m
=

10
0

n=
2 

m
=

10
00

n=
4 

m
=

10
00

n=
6 

m
=

10
00

n=
8 

m
=

10
00

c

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
pe

ci
fic

ity
 −

 d
ou

bl
e 

cu
be

n=
2 

m
=

10

n=
4 

m
=

10

n=
6 

m
=

10

n=
8 

m
=

10

n=
2 

m
=

10
0

n=
4 

m
=

10
0

n=
6 

m
=

10
0

n=
8 

m
=

10
0

n=
2 

m
=

10
00

n=
4 

m
=

10
00

n=
6 

m
=

10
00

n=
8 

m
=

10
000 0 0

d

Figure 5 Hypervolume sampling
analysis of simulated data, reflecting
a species distribution modelling
application. We assessed the ability of
multiple methods – hypervolume,
generalized linear model (GLM) and
generalized boosted regression model
(GBM) – to correctly predict sampled
points as being in or out of the single
(TC; Fig. 4a) or double (TDC; Fig. 4b)
hypercubes. Each boxplot represents the
prediction statistic calculated from 10
independent samples of m points from
each n-dimensional dataset. (a)
Sensitivity (true positive rate) and (b)
specificity (true negative rate) statistics
for the single hypercube dataset. (c)
Sensitivity and (d) specificity statistics
for the double hypercube dataset. For all
panels, boxes that are closer to one
indicate better methods.
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high-dimensional biological hypervolumes. The generality and

prevalence of holes in genotypic, phenotypic and climatic

hypervolumes is under-studied (Austin et al., 1990; Jackson &

Overpeck, 2000; Soberón & Nakamura, 2009). Our method can

detect holes by calculating the difference between hypervolumes

constructed with larger and smaller quantile thresholds. Addi-

tionally, little is known about how hypervolumes change over

time, for example for climate niche evolution (Peterson, 1999;

Box 3
Morphological hypervolumes of five species of Darwin’s finches co-occurring on Isabela Island

Estimated nine-dimensional hypervolumes for the five species listed in the bottom left inset are shown as pair plots. Variables have

original units of mm but have been log10-transformed: BodyL, body length; WingL, wing length; TailL, tail length; BeakW, beak

width; BeakH, beak height; LBeakL, lower beak length; UBeakL, upper beak length; N-UBkL, nostril–upper beak length; TarsusL,

tarsus length. The coloured points for each species reflect the stochastic description of each hypervolume, i.e. random points

sampled from the inferred hypervolume rather than original observations. The inset shows all possible pairwise overlaps between

species pairs (2 × shared volume/summed volume). Only two species pairs had non-zero overlap despite apparent overlap in each

pair plot. These analyses can be replicated by running the demo ‘finch’ within the R package.

The n-dimensional hypervolume
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Jackson & Overpeck, 2000). With appropriate palaeo-data, our

method can detect changes in hypervolume and overlap across

time periods. Finally, our method is relevant to studies of

community assembly, where multivariable analyses of trait

hypervolume may produce fundamentally different (and more

realistic) insights than single-variable analyses. Such approaches

will require robust null modelling approaches (Lessard et al.,

2012) to compare observed hypervolume geometry and overlap

with expectations under different null hypotheses. The low

runtime of our methods now makes this application

computationally tractable.

Data are rapidly becoming available to extend hypervolume

analyses to higher dimensions. For example, global climate

layers (e.g. WorldClim; Hijmans et al., 2005) provide data for

Box 4
Climate hypervolumes of two oak species

Occurrence data (shown in the inset) were mapped to climate data and used to infer hypervolumes. Hypervolumes are shown as pair

plots (Quercus rubra, red; Quercus alba, blue; four-dimensional climate-space overlap, purple). The coloured points for each species

reflect the stochastic description of each hypervolume, i.e. random points sampled from the inferred hypervolume rather than

original observations. Quercus rubra had a larger volume than Q. alba. We also projected these hypervolumes into geographic space

using the inclusion test for sampling (geographic ranges are shown in inset using the same colour scheme; purple indicates

geographic range overlap) and showed that Q. rubra also had a larger range. These analyses can be replicated by running the demo

‘quercus’ within the R package.

B. Blonder et al.
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measure climate hypervolumes while trait databases: TRY for

plants (Kattge et al., 2011) or MammalDB for birds, mammals

and reptiles (Baldridge et al., 2012), are examples which provide

data to measure functional hypervolumes, both along tens of

axes. While obtaining data in other contexts can still be difficult,

our tools will permit high-dimensional comparative analyses.

In sum, hypervolumes are relevant to individuals, genotypes,

communities, biomes and clades, and can be constructed from a

wide range of variables including climate, edaphic variables,

functional traits and morphology. Although hypervolumes are a

central though controversial concept in biology, they have not

been adequately measured in enough real systems in high

dimensions. We have provided the computational tools to make

this concept operational, usable and tractable.
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