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Abstract

Aim: Despite several recent efforts to map plant traits and to identify their climatic

drivers, there are still major gaps. Global trait patterns for major functional groups,

in particular, the differences between woody and herbaceous plants, have yet to be

identified. Here, we take advantage of big data efforts to compile plant species
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occurrence and trait data to analyse the spatial patterns of assemblage means and

variances of key plant traits. We tested whether these patterns and their climatic

drivers are similar for woody and herbaceous plants.

Location: New World (North and South America).

Methods: Using the largest currently available database of plant occurrences, we

provide maps of 200 9 200 km grid-cell trait means and variances for both woody

and herbaceous species and identify environmental drivers related to these patterns.

We focus on six plant traits: maximum plant height, specific leaf area, seed mass,

wood density, leaf nitrogen concentration and leaf phosphorus concentration.

Results: For woody assemblages, we found a strong climate signal for both means and

variances of most of the studied traits, consistent with strong environmental filtering. In

contrast, for herbaceous assemblages, spatial patterns of trait means and variances were

more variable, the climate signal on trait means was often different and weaker.

Main conclusion: Trait variations for woody versus herbaceous assemblages appear

to reflect alternative strategies and differing environmental constraints. Given that

most large-scale trait studies are based on woody species, the strikingly different

biogeographic patterns of herbaceous traits suggest that a more synthetic frame-

work is needed that addresses how suites of traits within and across broad func-

tional groups respond to climate.

K E YWORD S

BIEN database, environmental filtering, functional biogeography, growth form, habit,

macroecology, plant functional traits, plant functional types, TRY database

1 | INTRODUCTION

The geography of plant functions is unequivocally a foundation of

plant ecology (e.g. Schimper, 1898). Just as the functional characteri-

zation of species has reinvigorated the field of community ecology

(McGill, Enquist, Weiher, & Westoby, 2006), the functional charac-

terization of assemblages at large spatial scales is likely to provide

novel insights about the drivers of biogeographic patterns in species

diversity and ecosystem functioning (Lamanna et al., 2014; Stahl,

Reu, & Wirth, 2014). Such developments reflect the shift from a

“biogeography by taxa” to a “biogeography by functions” (Chown &

Gaston, 2008, 2016; Chown, Gaston, & Robinson, 2004; Gaston

et al., 2009; Reichstein, Bahn, Mahecha, Kattge, & Baldocchi, 2014;

Swenson et al., 2012; Violle, Reich, Pacala, Enquist, & Kattge, 2014).

Numerous studies have assessed spatial gradients in plant traits

in relation to the environment (e.g. Chave et al., 2009; Moles et al.,

2009; Swenson et al., 2012; Wright et al., 2004, 2005). However, a

general set of patterns has yet to emerge, which challenges the

assumption of universal and predictable trait–environment relation-

ships (Shipley et al., 2016). Trait–environment correlations are often

weak (e.g. r2 < .3 in Moles et al., 2014) and the strength and sign of

these correlations can vary across studies. For example, in some

studies plant height has been reported to increase most strongly

with precipitation (Moles et al., 2009; �S�ımov�a et al., 2015; Swenson

et al., 2012), whereas others have reported the strongest

relationship with mean annual temperature (Moles et al., 2014). In

some studies leaf nitrogen concentration increased with decreasing

temperature (Moles et al., 2014; �S�ımov�a, Rueda, & Hawkins, 2017;

Wright et al., 2005), whereas in others leaf nitrogen concentration

showed the opposite pattern (Ordo~nez et al., 2009; Swenson et al.,

2012); it has also been found to be most strongly related to precipi-

tation (Swenson & Weiser, 2010). Results concerning trait variances

diverge even more across studies (�S�ımov�a et al., 2015, 2017; Swen-

son & Weiser, 2010; Swenson et al., 2012). These inconsistencies

could be due to various factors such as differences in sampling scale,

sparsity of data, methods of inference, historical legacies, sensitivity

to land use and the specific growth forms studied (Borgy, Violle,

Choler, Denelle et al., 2017; Borgy, Violle, Choler, Garnier et al.,

2017). Many studies have combined woody and herbaceous species

in single analyses (e.g. Moles et al., 2014), which may have obscured

divergent trait–climate relationships. Using traits related to the sta-

ture of plants, D�ıaz et al. (2016) have shown that herbaceous and

woody species form two almost independent hotspots in the global

spectrum of plant form and function, indicating the fundamental dif-

ference between these two groups. Differences between these two

groups in their functional adaptations to environmental conditions

have also been identified (Ordo~nez et al., 2010; Petit & Hampe,

2006; Reich, Ellsworth, & Walters, 1998; Ricklefs & Latham, 1992).

We therefore propose that these two basic growth form strategies

—herbaceous versus woody plants—should be analysed separately
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to better identify and understand fundamental trait–climate

relationships.

Here, we focus on the geographic patterns of plant functional

traits across North and South America and ask: What are the spatial

patterns of means and variances in trait values of woody and herba-

ceous assemblages and how do these patterns differ between growth

forms? Which environmental drivers are related to these patterns, and

do they have similar effects on both woody and herbaceous plants?

We take advantage of two plant databases: (1) the BIEN database of

species’ traits, occurrences and range maps covering the entire New

World (Botanical Information and Ecology Network; Enquist, Condit,

Peet, Schildhauer, & Thiers, 2016; Maitner et al., in press), and (2) the

TRY Plant Trait Database (www.try-db.org; Kattge et al., 2011). We

use two types of species distribution data: species occurrences and

species range maps. Both types of data have advantages and disad-

vantages. Species occurrences data document presence with high cer-

tainty, but are biased by uneven sampling intensity, resulting in

numerous gaps due to false absences. Species range maps are much

less affected by sampling bias and false absences, but as they are mod-

elled in part using climate variables, their use can introduce circularity

into analyses of trait–climate correlations. We therefore restricted our

analyses to occurrence data only and used species range maps to ver-

ify the occurrence-based spatial trait patterns. We examined the fol-

lowing plant traits related to key plant ecological strategies (D�ıaz

et al., 2016): plant height, specific leaf area (SLA) and seed mass as

representatives of major plant strategies (Westoby, 1998), and leaf

nitrogen and phosphorus concentrations per mass as key resource

use–related traits (Chown & Gaston, 2008). For trees, we also included

wood density, a key trait in the wood economics spectrum (Chave

et al., 2009).

2 | MATERIALS AND METHODS

2.1 | Species distribution data

The BIEN (Botanical Information and Ecology Network) database

(http://bien.nceas.ucsb.edu/bien/biendata/bien-3/) integrates

20,465,306 plant observations that have been standardized for tax-

onomy and georeferences and that have their coordinates within

North or South America. Observations stem from herbarium speci-

mens and vegetation plot inventories. The BIEN 3.0 dataset (re-

trieved on 13 November 2014) consists of 114,412 plant species in

the continental New World (see Appendix 1 for the reference list).

Most of these data are now publicly available via the “BIEN” R pack-

age (Maitner et al., in press) with some exceptions concerning the

coordinates of endangered species and records from private data-

bases (see Maitner et al., in press for details).

As an additional species distribution dataset, we used the BIEN

2.0 range maps available for 88,417 New World species (Goldsmith

et al., 2016). The method of building the range maps differed

depending on the number of occurrences per species available in the

database: A species with only one or two occurrence records was

assigned a fixed range of 75,000 km2 surrounding each occurrence

point. Species with 3–4 records had their ranges defined as convex

hulls. Ranges for species with >5 records were modelled using the

MAXENT species distribution modelling algorithm with a balanced set

of climate predictors and spatial eigenvectors (Phillips, Anderson, &

Schapire, 2006; see Goldsmith et al., 2016, for details on the range

maps methodology).

We overlaid the BIEN 3.0 occurrences on a 200 9 200 km grid

(Lambert Azimuthal Equal Area projection) to obtain a species list for

each grid cell. We repeated the same procedure with the species’

range maps of BIEN 2.0. We chose this resolution as it is robust to

potential overestimation of area of occupancy by individual species

derived from range maps (Hurlbert & Jetz, 2007). We only included

cells with more than 80% of their area on land.

2.2 | Trait data

We analysed variation in six functional traits: maximum plant height

(m), SLA (cm2/g), seed mass (mg), leaf phosphorus and leaf nitrogen

concentration per mass (Leaf N and Leaf P) (mg/g), and wood den-

sity (mg/cm3). We combined the BIEN and TRY trait data (retrieved

on 19 October 2014; a list of the data sources is found in

Appendix 1). Merging TRY and BIEN resulted in the largest plant

trait compilation for North and South America to date, including

more than 70,000 species-level observations for the six plant traits

used in the study.

Growth form data were taken from Engemann et al. (2016). Spe-

cies with more than one growth form assignment were included only

if >2/3 of the observations of a given species agreed on one growth

form (see Engemann et al., 2016 for details). We split the species

data into two functional groups: “woody” and “herbaceous”. We con-

sidered plants scored as tree, shrub or liana as “woody”, whereas

“herbaceous” plants were represented by those scored as herbs,

grasses, ferns, vines and epiphytes. We excluded mosses and aquatic

species. We were able to assign a growth form to 47,784 species

having georeferenced occurrence records (21,390 woody and 26,394

herbaceous species). Among these, we obtained 6,107 woody and

6,056 herbaceous species with at least one known trait value

(Appendix S1). The best coverage was for seed mass (3,060 woody

and 5,259 herbaceous species), whereas the lowest coverage was

for leaf P (1,754 woody and 808 herbaceous species) (see Figures

S2.1 and S2.2 and Table S2.1 for details on trait coverage).

Prior to analyses, we loge transformed the values of seed mass,

height and wood density to correct for skewness in trait distribu-

tions and to improve the normality of the residuals in the fitted sta-

tistical models. In addition, we checked for outlying trait values and

manually removed unrealistic outliers assumed to be probable errors

in trait observations (10 values total).

2.3 | Environmental data

We included six climatic predictors (representing 1960–1990 condi-

tions) that have been commonly used in trait-based studies and/or

represent different aspects of climate affecting plant ecophysiology
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(e.g. Lambers, Chapin, & Pons, 2008; Larcher, 2003). Mean annual

temperature (°C), annual precipitation sum (mm), temperature season-

ality (standard deviation of monthly temperature multiplied by 100)

and precipitation seasonality (coefficient of variation of monthly pre-

cipitation) were taken from the WorldClim database (version 1.4;

www.worldclim.org, Hijmans, Cameron, Parra, Jones, & Jarvis, 2005).

Mean annual solar radiation was obtained from CliMond (accessed 7

July 2015; https://www.climond.org/BioclimData.aspx; Kriticos et al.,

2012). Global aridity index was obtained from CGIAR-CSI GeoPortal

(accessed 21 April 2014; http://www.cgiar-csi.org/; Trabucco &

Zomer, 2010). This index is calculated as the ratio of annual precipita-

tion to potential evapotranspiration, with higher values of this index

representing lower aridity. We projected the climate variables to the

Lambert Azimuthal Equal Area projection using nearest-neighbour

interpolation and resampled each variable to 200 9 200 km grid size

by computing mean values for each grid cell using the R “raster” pack-

age (Hijmans et al., 2016; R Development Core Team, 2017).

2.4 | Data analyses

We first coupled the species occurrences from each grid cell to the

species-level trait data. We separated woody and herbaceous spe-

cies (except for wood density, which only applies to woody species).

Next, using species’ trait values per grid cell, we calculated per-cell

mean and variance for each trait and repeated this calculation using

the species occurrences inferred from the range maps. We sepa-

rately mapped trait patterns based on species occurrences and on

occurrences inferred from the range maps. Trait maps based on spe-

cies occurrences per grid cell can be spatially biased because of dif-

ferential sampling intensity and the presence of species with

extreme trait values (Borgy, Violle, Choler, Garnier et al., 2017). To

address this, we excluded grid cells with a higher variance than the

99% quantile for the respective traits (Figure S2.3) and two grid cells

of extremely high values of mean leaf N and SLA.

We used spatial correlations to compare the similarity in geo-

graphical patterns of both woody and herbaceous trait means and

variances based on species occurrences versus species occurrences

inferred from the range maps. We used the Pearson correlation

coefficient and Dutilleul’s method of correction for degrees of free-

dom to account for spatial autocorrelation (package “SpatialPack”;

Osorio & Vallejos, 2014).

Next, we searched for climatic predictors of trait means and vari-

ances using model selection according to the Akaike information cri-

teria (AIC) weight (Burnham & Anderson, 2002; Wagenmakers &

Farrell, 2004). We used the dredge function in the R “MuMln” pack-

age (Barton, 2016). As the trait–climate relationship can be nonlinear,

we used all six climate variables in their linear and quadratic form

(12 explanatory variables in total). To reduce the model complexity

and identify the most important predictors, we limited the number

of terms in the model output to a maximum of six (results presented

in the main text). In addition, we also performed a model with unlim-

ited number of the output terms (results presented in Appendix S3).

Researchers have argued that AIC approach tends to select overly

complex models (e.g. Kass & Raftery, 1995). Therefore, to verify our

results, we additionally performed a Lasso model selection; results

presented in Appendix S3.

To compare woody and herbaceous trait–climate relationships, we

re-ran the model selection for the combined dataset of standardized

trait means (or variances) for both growth forms together. Standard-

ization was done by dividing the centred variables by their standard

deviations (function scale in R; Becker, Chambers, & Wilks, 1988). As

explanatory variables, we included (1) the subset of standardized cli-

mate variables selected in the model selection process explained

above, (2) the interaction terms between all these climate variables (in

their linear forms) and the growth form (woody or herbaceous), and

(3) the growth form (woody or herbaceous). Similarly, as above, we

limited the number of terms in the model output to a maximum of six

and we additionally performed the selection with unlimited number of

terms in the model output and the Lasso model selection (Zhao & Yu,

2006; results presented in Appendix S3).

In addition, we examined separate linear regression models for

each climate variable with the combined dataset of standardized trait

means (or variances) for both growth form groups together as

response variables and standardized climate (in its linear and quadra-

tic form), the growth form–climate interaction term and the main

effect of growth form as explanatory variables. Specifically, we

tested for the significance of the interaction term between climate

and growth form. When the trait–climate relationship is the same for

both woody and herbaceous species, we expect a significant climate

signal, but a non-significant effect of the interaction term.

The availability of species trait values is likely to vary geographi-

cally, which could bias the results. Therefore, we weighted the

regression models by the square root of the per-cell number of spe-

cies with known values of a particular trait (the results presented in

the main text), and compared the results with unweighted regression

models (results presented in Appendix S3).

3 | RESULTS

3.1 | Comparison of trait patterns based on
occurrences to patterns based on range maps

Variation in most trait patterns based on species occurrences per

grid cell corresponded well to variation in trait patterns based on

species occurrences inferred from species range maps (Table 1). The

closest match between the two methods was for all trait means of

woody species, whereas the weakest match was for means and vari-

ances of leaf N and leaf P of herbaceous species and for variance in

wood density of woody species. The spatial patterns were generally

stronger for woody species compared to herbaceous species.

3.2 | Climate signals on trait means and variances
in woody and herbaceous species

We found strong trait–climate relationships for trait means of woody

species (Table 2, average r2 = .67), but much weaker relationships
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for herbaceous trait means (Table 2, average r2 = .22) and for most

woody and herbaceous trait variances (Table 2, average r2 = .38 for

woody and .33 for herbaceous species).

Mean height of woody species primarily increased with mean

annual temperature, with the tallest trees occurring above 10°C (Fig-

ure S3.6). Although mean height of herbaceous species also

increased with increasing temperature, its best predictor was solar

radiation, with the tallest species at sites of medium radiation (Fig-

ure S3.6). Mean SLA of woody species increased with increasing

temperature and precipitation, although these relationships became

flatter after reaching 10°C and 1500 mm, respectively (Figure S3.6).

Woody SLA also increased curvilinearly with increasing temperature

seasonality. Herbaceous mean SLA primarily increased with increas-

ing temperature and precipitation, similar to woody SLA. Woody

seed mass strongly increased with increasing precipitation. Mean

seed mass of both growth form groups also increased with mean

annual temperature, although this relationship was much weaker for

herbaceous species. Mean leaf N of woody species increased with

increasing temperature and decreasing solar radiation. Although tem-

perature was also the best predictor of herbaceous leaf N, the rela-

tionship was much weaker. Mean leaf P of woody species was

higher but variable outside the tropics and uniformly lower within

the tropics (Figure 1, column 1), and its variation strongly correlated

with temperature seasonality. Little spatial pattern was evident for

herbaceous mean leaf P (Figure 1, column 2), consistent with the

weak sensitivity to environmental variables (model r2 = .05). Mean

wood density increased with increasing temperature and decreasing

precipitation. These results remained qualitatively similar when per-

forming a model selection with unlimited number of terms in the

model output (Table S3.2) and when performing a Lasso model

selection (Table S3.3), except that in the latter case, the importance

of the solar radiation was rather weak.

In contrast to the high correlations between climate and trait

means (for woody species assemblages), correlations between cli-

mate and most trait variances were weaker (average r2 = .36;

Table 2). Trait variances were often predicted by solar radiation

(woody height, SLA, herbaceous seed mass, woody leaf N and leaf P)

and temperature seasonality (herbaceous height, herbaceous leaf P),

but the form of these relationships was variable (Table 2, Figures

S3.9–S3.11). For instance, whereas variance in height of herbaceous

species decreased curvilinearly with increasing temperature seasonal-

ity, this relationship was nearly unimodal for variance in woody SLA

and height. Similarly, whereas variance in height, herbaceous SLA,

and woody leaf P increased with decreasing solar radiation, the rela-

tionship was opposite for herbaceous seed mass and woody SLA.

These results were qualitatively similar when performing a model

selection with unlimited number of terms in the model output

(Table S3.2). Nevertheless, when using a Lasso model selection, the

results were frequently different and solar radiation remained a

strong and important predictor of variance in herbaceous SLA only

(Table S3.3).

When testing for the similarity in trait–climate relationships

between the growth forms using model selection with standardized

variables, the growth form–climate interaction term was a relatively

strong and important predictor of almost all trait means and vari-

ances (Table 3). This indicates that each growth form displays a dif-

ferent relationship with particular climate variables (Figure 2). The

variable with the strongest impact on the dissimilarity in trait–climate

relationship between the growth forms was often temperature sea-

sonality. The results largely remained the same when performing a

model selection with unlimited number of terms in the model output

and when performing a Lasso model selection (Tables S3.5–S3.6).

Here, both mean annual temperature and temperature seasonality

often had the strongest impact on the difference between woody

and herbaceous species. When testing for the effect of the growth

form–climate interaction terms using separate linear regression mod-

els for each climate variable, the effect of the growth form–climate

interaction term was significant in most cases, further supporting the

different responses of woody and herbaceous trait means and vari-

ances to climate (Figures S3.12–S3.17).

Most of the observed relationships between trait means and cli-

mate remained when performing a model selection based on the

unweighted regression (Table 2 vs. Table S3.4). The only differences

occurred for poorly sampled traits such as herbaceous leaf N and

leaf P. However, for trait variances, the results based on the

unweighted regression were frequently different from the weighted

results. Like for the weighted models, the unweighted trait–climate

relationships for standardized variables differed between woody and

herbaceous species (Tables 3 vs. S3.7). Nevertheless, the variable

having the strongest impact on the difference between woody and

herbaceous species was often mean annual temperature rather than

temperature seasonality. The effect of the interaction term of cli-

mate and the growth form on trait means was weaker, however,

when compared to the results based on the weighted regression.

Higher noise in the data of poorly sampled regions (e.g. Amazon

TABLE 1 Pearson correlation coefficients (r) between trait means
(means) or variances (vars) based on species occurrences and those
based on species ranges maps. “W” is woody habit, “H” is
herbaceous habit. *Indicates significant correlation (p < .05) and (*)
indicates marginally significant correlation (p < .1) when accounting
for the effect of space using Duttieul’s method

Trait Habit r (means) r (vars)

Height W .844* .604*

Height H .552* .605

SLA W .695* .473*

SLA H .413* .315(*)

Seed mass W .891* .470*

Seed mass H .186* .281*

Leaf N W .708* .571*

Leaf N H .237* .282(*)

Leaf P W .768* .285*

Leaf P H �.003 .244*

Wood density W .762* .055
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basin) can thus partly mask the differences in trait–climate relation-

ships between growth forms.

4 | DISCUSSION

By using the largest and most complete large-scale plant distribution

and trait datasets for the New World, we found strong spatial pat-

terns and climatic associations for several key plant functional traits.

Consistent with existing evidence and theoretical expectations (Ker-

khoff, Enquist, Elser, & Fagan, 2005; Moles & Westoby, 2003; Reich,

2014), we found that compared to colder environments, warmer and

wetter environments are characterized by taller plants with larger

seeds and leaves characterised by greater area per unit biomass.

However, trait–climate relationships differed overall between woody

and herbaceous species, including different climate predictors or dif-

ferent shapes of the trait–climate relationships.

Means and variances of herbaceous traits appeared less strongly

linked to climate than woody traits. These differences were stron-

gest for mean leaf phosphorus concentration, seed mass and vari-

ance in height and specific leaf area. Such discrepancies may result

from the higher diversity in strategies among herbaceous species

when compared to woody species. This corresponds to existing evi-

dence that herbaceous species tend to occupy smaller, more special-

ized niches than woody species (Ricklefs & Latham, 1992). There are

several possible explanations for the weaker climate signal for herba-

ceous species. In particular, the microclimate perceived by under-

storey herbaceous communities is not captured by macroclimate

variables (Schneider et al., 2004). Interestingly, the variable with the

strongest impact on the dissimilarity in trait–climate relationship

between the two growth forms was often temperature seasonality.

Differences in strategies to cope with unfavourable seasons thus

seem to be the key factor responsible for the difference in woody

versus herbaceous trait values.

TABLE 2 The best models explaining trait means and variances of each trait selected according to AIC weight. Coefficients below each
explanatory variable have been standardized and indicate the relative contribution of this variable to each model. The number of terms in the
model output is limited to a maximum of six. See Table S3.2 for the results for an unlimited number of terms and Table S3.3 for Lasso model
selection. “W” is woody habit, “H” is herbaceous habit, “T” is mean annual temperature, “P” is annual precipitation, “TS” is temperature
seasonality, “PS” is precipitation seasonality, “Arid” is aridity index (P/PET) and “Solar” is annual solar radiation. Each variable is represented by
the linear form (e.g. T) and quadratic form (e.g. T2). See Figures S3.6–S3.11 for plots of the respective contribution of each predictor. All these
models were weighted by square root of the per-cell number of species with known trait. See Table S3.4 for the unweighted models

Trait Habit r2 T T2 P P2 TS TS2 PS PS2 Arid Arid2 Solar Solar2

Mean

Height W .82 1.27 �0.77 0.33 �0.99 1.07 �0.11

Height H .39 0.91 �0.49 0.13 0.38 1.42 �1.43

SLA W .42 1.53 �1.15 1.20 �0.80 �0.50 1.05

SLA H .36 0.88 �0.71 0.40 0.19 �0.06 �0.30

Seed mass W .86 0.77 �0.28 1.03 �0.37 0.15 �0.30

Seed mass H .18 0.63 �0.43 0.16 0.40 �0.43

Leaf N W .52 0.90 �0.41 �0.21 �0.15 �1.17 1.08

Leaf N H .13 0.23 �0.38 �0.21 �0.11 �0.12

Leaf P W .83 0.70 �0.69 0.10 1.43 �0.75 �0.17

Leaf P H .05 0.22 �0.26 �0.11 �0.14

Wood density W .60 0.97 �0.15 �0.16 �0.19 0.19

Variance

Height W .65 �0.33 �0.20 0.90 �0.89 �1.17 1.00

Height H .56 �0.09 �1.53 0.92 �0.06 �1.23 1.25

SLA W .19 �0.17 0.52 �0.52 0.15 1.54 �1.32

SLA H .32 0.82 �0.67 0.13 0.30 �2.61 2.14

Seed mass W .46 �0.30 1.20 �0.62 �0.38 �0.13 �0.20

Seed mass H .26 0.19 0.12 0.37 �0.16 0.82 �0.81

Leaf N W .44 �0.18 �0.65 �0.18 �1.13 1.16

Leaf N H .16 0.54 �0.26 �0.24 �0.51 0.17 �0.21

Leaf P W .28 1.12 �1.23 �0.36 0.41 �2.38 2.41

Leaf P H .35 �0.15 �1.14 0.65 0.06

Wood density W .22 �0.29 0.09 �0.45 0.36
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Our findings that some trait–climate relationships depend on

growth form have important implications for studies predicting the

functional response of ecosystems to changing climate. Although

numerous large-scale studies focus on woody species only and make

strong generalizations from this growth form, our results imply that

plant woodiness must be considered to adequately assess the impor-

tance of climate for plant traits. Importantly, the differences between

growth forms may explain the weak trait–climate relationships

observed in previous studies that pooled all growth forms for analy-

sis (e.g. Moles et al., 2014; Ordo~nez et al., 2009).

Consistent with expectations of strong and predictable trait–en-

vironment relationships (Lavorel & Garnier, 2002; Shipley et al.,

2016), variation in plant traits showed significant correlations with

climate variables. Mean annual temperature, temperature seasonality

and solar radiation were among the best predictors of these traits,

which is in line with the species-level approach of Moles et al.

(2014). Seasonality of precipitation had, in turn, the lowest effects

on trait means and variances, suggesting that it plays a less impor-

tant role in the biogeography of these traits at continental scales.

Many of the observed trait–climate correlations are broadly

F IGURE 1 Trait maps of grid-cell trait
means and variances for woody species
(the first and third columns) and
herbaceous species (the second and fourth
columns). Note that trait values of height,
seed mass and wood density were loge-
transformed prior calculating grid-cell trait
means and variances. See Figures S2.4 and
S2.5 for comparison to trait maps based on
species ranges maps
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consistent with existing hypotheses and past studies focused on sin-

gle trait–climate correlations. Murray et al. (2004) hypothesized that

warmer environments increase metabolic rates, leading to the higher

metabolic costs for seedlings and, thus, a need for larger seeds,

whereas Moles and Westoby (2003) hypothesized that larger seeds

would be favoured under warm and wet conditions due to higher

competitive pressures. Consistent with these predictions, mean seed

mass increases with increasing temperature (results also found in

Moles et al., 2009; �S�ımov�a et al., 2015; Swenson & Weiser, 2010)

and precipitation. Similarly, consistent with Ryan and Yoder’s (1997)

hydraulic limitation hypothesis for trees, mean height increases

towards warm and wet climates as hydraulic pathways are increas-

ingly vulnerable to frost and drought embolisms (Ryan & Yoder,

1997; Stegen et al., 2011). The observed increase in wood density

with increased temperature is also consistent with the hydraulic limi-

tation hypothesis as denser wood in warmer, drought-prone environ-

ments provides increased mechanical support in the form of

resistance to xylem conduit implosion or rupture (Hacke, Sperry,

Pockman, Davis, & McCulloh, 2001). Consistent with Kerkhoff et al.

(2005), leaf phosphorus concentration of woody species tends to

increase, whereas leaf nitrogen concentration tends to decrease in

colder, more seasonal environments. Kerkhoff et al. (2005) argued

that such environments would select for increased phosphorus con-

centration relative to nitrogen concentration to increase growth

rates and growth efficiencies. It is also possible that lower leaf phos-

phorus in tropical plant tissues results from lower soil phosphorus

concentration in tropical ecosystems (Quesada et al., 2009). The

mean specific leaf area of both woody and herbaceous species

decreases with decreasing temperature and with decreasing

precipitation (consistent with empirical findings of Hulshof et al.,

2013; �S�ımov�a et al., 2015; Swenson et al., 2012). This corresponds

to the trade-off between slow photosynthetic rate and long leaf

lifespan under stressful conditions versus fast tissue turnover and

high potential for resource capture under more favourable conditions

(Reich, 2014). It is also consistent with a recent hypothesis that

lower specific leaf area in colder environments helps modulate leaf

temperatures (Michaletz et al., 2016). Interestingly, specific leaf area

of both growth form groups increased with increasing temperature

seasonality after accounting for the effect of temperature and pre-

cipitation. A possible explanation is that some species (e.g. winter

deciduous trees) require higher photosynthetic rates to adapt to a

short growing season.

Other observed trait correlations with climate are not consistent

with any existing hypotheses and do not have any precedent in the

literature. For example, in contrast to previous reports of inconsis-

tent relationships between leaf nitrogen concentration and climate

(Moles et al., 2014; Ordo~nez et al., 2009; Swenson et al., 2012),

temperature and solar radiation were both strong predictors of

woody leaf nitrogen concentration in our study. This may reflect an

increased frequency of nitrogen-fixing trees towards lower latitudes,

producing a shift in nitrogen use strategy (Menge, Lichstein, & �Ange-

les-P�erez, 2014).

Furthermore, in contrast to some previous studies and expecta-

tions, we found little evidence that harsh environments reduce the

number of viable strategies (e.g. Swenson et al., 2012). Overall, the

variation in trait variances along environmental gradients was often

rather weak. This is consistent with recent findings indicating that

the environment affects large-scale assemblage composition by

TABLE 3 The best models explaining trait means and variances merged for both growth form groups selected according to the AIC weight.
Coefficients below each explanatory variable are standardized and indicate the relative contribution of this variable to each model. The number
of terms in the model output is limited to a maximum of six. See Table S3.5 for the results for an unlimited number of terms and Table S3.6
for Lasso model selection output. See Table 2 for explanations of abbreviations of environmental variables. “GF” is growth form (woody/
herbaceous). Each variable is represented by the linear term (e.g. T), quadratic term (e.g. T2) and interaction term with growth form (e.g. GF:T).
Note that precipitation seasonality was omitted as it was not selected in any case. All variables were standardized prior analysis. All models
were weighted by square root of the per-cell number of species with known trait. See Table S3.7 for the unweighted models

Trait r2 T T2 P P2 TS TS2 Arid Arid2 Solar Solar2 GF
GF:
T GF:P GF:TS

GF:
Arid

GF:
Solar

Mean

Height .61 0.42 0.14 0.43 �0.23 �0.01 �0.41

SLA .54 �0.48 0.98 �0.41 0.86 0.02 �0.48

Seed

mass

.56 0.35 �0.39 0.22 �0.20 �0.11 �0.40

Leaf N .59 �0.55 �0.16 �0.70 0.27 �0.08 0.36

Leaf P .76 �0.36 �0.04 �0.12 0.15 1.11 0.21

Variance

Height .54 �0.17 �0.76 0.14 0.09 �0.17 0.74

SLA .40 0.56 �0.31 �0.09 0.17 �0.27 0.51

Seed

mass

.51 �0.33 �0.41 0.24 0.48 �0.24 �0.10

Leaf N .51 �0.21 �0.61 �0.15 0.26 0.05 �0.17

Leaf P .43 �0.48 �0.07 0.19 0.09 0.91 0.36
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F IGURE 2 The relationships of partial
effect of standardized (a) trait means and
(b) variances for woody species (red circles)
and herbaceous species (black circles)
plotted against the standardized climatic
predictor having the strongest impact on
the difference between the growth forms
(Table 3). For variance in seed mass, none
of the growth form–climate interaction
terms was selected. The variable on the y-
axis is calculated as residuals of the linear
regression model with standardized trait
means (a) and variances (b) for both
growth forms together as a response
variable and its climate predictors
presented in Table 3 (without the variable
on the x-axis) as explanatory variables.
Note that woody and herbaceous trait
means and variances were standardized
separately. The model fit is a quadratic
regression
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selecting for a certain optimal trait values rather than constraining

trait variances (�S�ımov�a et al., 2015, 2017). It is also possible that

trait divergence is more driven by biotic interactions (even if debat-

able at the grid size under scrutiny, see Damgaard & Weiner, 2017)

or environmental heterogeneity not captured in our analyses. Never-

theless, given that the results concerning trait variances were highly

sensitive to different model selection approaches, they should be

interpreted with caution.

Interestingly, the spatial patterns of traits were largely similar

when the underlying data were species occurrences or species

occurrences as inferred from species range maps. Species distribu-

tion models have improved significantly in recent years (Merow

et al., 2014; Thuiller, Lavorel, Sykes, & Ara�ujo, 2006; Thuiller, Mun-

kemuller, Moller, Fiedler, & Berthold, 2010) and range maps are

increasingly available for many plant species worldwide. These

advances will facilitate large-scale studies focused on functional

traits. An important next step for quantifying spatial variation in

traits is to predict changes in ecosystem services (Violle, Choler,

et al., 2015) or vegetation dynamics at large spatial scales under glo-

bal climate change scenarios (Scheiter, Langan, & Higgins, 2013).

However, caution must be used in interpreting some results. For

instance, merging leaf nitrogen or phosphorus concentration values

with range maps of herbaceous species in under-sampled regions of

South America generated strong spatial patterns (Figure S2.4, column

4), but the ecological meaning of such patterns remains unclear. On

the other hand, at high latitudes (such as Canada in the case of this

study), where species ranges are large and the vegetation is rela-

tively homogenous, species range maps can improve maps of plant

functional traits. The estimation of errors and uncertainties when

using incomplete and heterogeneous datasets thus remains a priority

for assessing the credibility of findings in the emerging field of func-

tional biogeography (Borgy, Violle, Choler, Garnier et al., 2017;

Violle, Borgy, & Choler, 2015).

Even though our results are based on the best plant trait and

species distribution data currently available at this extensive spatial

scale, they must be viewed in light of several important caveats.

First, we used only mean species trait values and ignored intra-speci-

fic trait variability. Although some traits show greater plasticity than

others (Kattge et al., 2011; Kazakou et al., 2014), intra-specific trait

variation may be more important to incorporate when exploring spe-

cies assembly processes at smaller scales than at larger scales that

cover multiple and strongly heterogeneous biomes (Albert, Grassein,

Schurr, Vieilledent, & Violle, 2011; Siefert et al., 2015; Violle et al.,

2012) and exceed the range limits for most of the component spe-

cies. Second, our measures of trait means and variances are not

weighted by the relative abundance of those species within each

grid cell. As a result, rare species are given as much statistical weight

as common species. We suspect that accounting for trait abundance

by using weighted measures of trait means and variances would

strengthen the relationships (Borgy, Violle, Choler, Denelle et al.,

2017). Third, our analyses are based on a relatively coarse spatial

resolution. Although this resolution should be robust to potential

overestimation of species distributions derived from range maps

(Hurlbert & Jetz, 2007), finer resolution should better capture local

environmental conditions and could lead to stronger trait–climate

relationships. A more important issue, however, is spatial sampling

bias. A substantial fraction of the tropical species, especially the

South American species, is lacking trait values. We showed that,

whereas trait means were relatively robust to the spatial unevenness

of species occurrence records, trait variances were much more sensi-

tive to sampling bias and their relationships to climate should thus

be interpreted with caution. Fortunately, the number of trait mea-

surements in large databases continues to increase. Furthermore, our

maps of sampling intensity (Figures S2.1 and S2.2) can guide ecolo-

gists and plant physiologists to where future field measurements of

trait values are needed.

Our results have important implications for the emerging field of

functional biogeography. First, observed relationships between trait

means and variances are helping to assess several prominent

hypotheses regarding the climate signal on plant traits (e.g. the

hydraulic limitation hypothesis, the seed mass-environmental

favourability hypothesis). Second, the differences in trait–climate cor-

relations observed for woody versus herbaceous species imply that

it is critical to differentiate between woody and herbaceous plants in

large-scale, trait-based studies. An important next step for future

studies will be to combine the maps of trait means and variances

with maps of ecosystem processes (e.g. remotely sensed productivity

data). This will enable us to evaluate the relative importance of both

in driving ecosystem processes, a long-standing goal of functional

ecology (D�ıaz et al., 2007; Enquist et al., 2015; Lavorel, 2013). In

turn, this will help refine structure and simulation of dynamic vegeta-

tion models over large spatial scales (Reichstein et al., 2014) and

improve predictions of ecosystem services (Violle, Choler, et al.,

2015).
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