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Abstract
1.	 Ecosystem processes are driven by both environmental variables and the attrib-
utes of component species. The extent to which these effects are independent 
and/or dependent upon each other has remained unclear. We assess the extent to 
which climate affects net primary productivity (NPP) both directly and indirectly 
via its effect on plant size and leaf functional traits.

2.	 Using species occurrences and functional trait databases for North and South 
America, we describe the upper limit of woody plant height within 200 × 200 km 
grid‐cells. In addition to maximum tree height, we quantify grid‐cell means of three 
leaf traits (specific leaf area, and leaf nitrogen and phosphorus concentration) also 
hypothesized to influence productivity. Using structural equation modelling, we 
test the direct and indirect effects of environment and plant traits on remotely 
sensed MODIS‐derived estimates of NPP, using plant size (satellite‐measured 
canopy height and potential maximum tree height), leaf traits, growing season 
length, soil nutrients, climate and disturbances as explanatory variables.

3.	 Our results show that climate affects NPP directly as well as indirectly via plant 
size in both tropical and temperate forests. In tropical forests NPP further in-
creases with leaf phosphorus concentration, whereas in temperate forests it in-
creases with leaf nitrogen concentration. In boreal forests, NPP most strongly 
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1  | INTRODUC TION

The composition of plant species assemblages is often cited as a 
significant driver of key ecosystem functions, such as carbon, nu-
trient and water cycles, and of the resulting ecosystem processes 
such as evapotranspiration, decomposition and biomass production 
(Cornwell et al., 2008; Grime, 1997; Lavorel & Garnier, 2002). As 
such, a key challenge for improving our ability to predict the eco-
logical impacts of global climate change lies in understanding how 
environmental and land‐use changes alter the composition of plant 
assemblages and how this in turn affects ecosystem processes 
(Chapin et al., 2000). Plant functional traits are increasingly empha-
sized as a way to link species composition to ecosystem function. 
For example, at the organismal and community scale, several studies 
have documented that variation in functional traits drives variation 
in ecosystem functions such as carbon or water cycles (Michaletz, 
Cheng, Kerkhoff, & Enquist, 2014; Reich, Walters, & Ellsworth, 1997; 
Stephenson et al., 2014; Violle et al., 2007). Nevertheless, how such 
relationships scale up from larger landscapes to continental scales 
remains unresolved. A way forward is to combine maps of functional 
traits of species assemblages with maps of ecosystem processes (e.g. 
satellite‐derived productivity data) to allow the importance of plant 
traits in driving ecosystem processes at large spatial scales to be 
evaluated (Díaz et al., 2007; Lavorel et al., 2013).

Perhaps the most important trait affecting variation in ecosys-
tem carbon, water and nutrient fluxes is plant size, which is often 
measured as height or stem diameter (Chapin, Bret‐Harte, Hobbie, 
& Zhong, 1996; Niklas & Enquist, 2001; Stephenson et al., 2014). 
Metabolic scaling theory (MST) for forest structure and dynamics 
predicts that whole‐stand resource use (e.g. carbon flux) should be 
proportional to the size of the largest individual present at the stand 
(Enquist, West, & Brown, 2009; West, Enquist, & Brown, 2009):

where Btot is the whole‐stand metabolic rate or resource flux (e.g. car-
bon or water), Mtot is the total biomass of the stand, b is a mass‐scal-
ing exponent (which depends on the size structure of the stand, the 
scaling of resource use with plant size and the scaling of stem radius 

and plant biomass) and rm is the size (measured as stem radius) of the 
largest individual in the stand. MST predicts that the largest indi-
vidual in the stand should be a central if not the primary predictor of 
variation in Btot and Mtot. In agreement with theory, there is evidence 
that stand biomass of tropical and temperate forest plots, primarily 
determined by the size of the largest tree (Stegen et al., 2011), is one 
of the major drivers of forest productivity (Michaletz et al., 2014; 
Michaletz, Kerkhoff, & Enquist, 2018). Furthermore, given that tall 
trees sequester carbon at higher absolute rates compared to smaller 
trees (Stephenson et al., 2014), they are often strong contributors to 
the whole‐stand carbon flux (Fauset et al., 2015; Gholz, 1982; but 
see Ligot et al., 2018). These theoretical predictions, however, are 
expected to be modified by human land‐use or natural disturbances 
(Kerkhoff & Enquist, 2007; McDowell et al., 2018; see also Coomes, 
Holdaway, Kobe, Lines, & Allen, 2012; Muller‐Landau et al., 2006).

Although some studies claim that variation in forest productiv-
ity is primarily determined by the direct effects of climate (Raich, 
Russell, Kitayama, Parton, & Vitousek, 2006; Sankaran et al., 2005; 
Schuur, 2003), others suggest an indirect role of climate acting via 
local adaptations, soil nutrients or regional land‐use history mirrored 
in stand biomass (Chapin, Matson, & Vitousek, 2011; Michaletz et al., 
2014, 2018) or a combination of these (Chu et al., 2016). Therefore, 
the unique contribution of stand biomass to rates of carbon flux, 
carbon sequestration and productivity relative to factors such as cli-
mate, disturbances and land‐use intensity still needs to be evaluated.

Here, we test whether climate affects net primary produc-
tivity (NPP) directly or indirectly via its effect on tree size, a sur-
rogate of stand biomass, as measured by maximum tree height, 
in 200 × 200 km grid cells. As an NPP estimate, we used MODIS 
(Moderate Resolution Imaging Spectroradiometer) derived NPP 
(Running et al., 2004), defined as the total carbon that plants gain 
during photosynthesis minus the carbon lost by respiration. Our 
analyses utilized and compared two different measures of maximum 
tree height: (a) maximum canopy height per cell (“canopy height” 
hereafter), derived from remote sensing using a Geoscience Laser 
Altimeter System (GLAS), and (b) potential maximum tree height of 
all co‐occurring plant species per cell, obtained by intersecting spe-
cies occurrence records from that cell and species trait data.

Btot∝
(

Mtot

)b
∝ rm,

increases with increasing temperature and neither plant size nor leaf traits have a 
significant influence.

4.	 Synthesis. Our results suggest that at large spatial scales plant size and leaf nutrient 
traits can improve predictions of forest productivity over those based on climate 
alone. However, at higher latitudes their role is overridden by stressful climate. 
Our results provide independent empirical evidence for where and how global 
vegetation models predicting carbon fluxes could benefit from including effects of 
plant size and leaf stoichiometry.

K E Y W O R D S

BIEN database, biogeography and macroecology, biomass production, ecosystem function and 
services, leaf nitrogen, leaf phosphorous, MODIS, TRY database
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The relationship between tree height, climate and NPP can be 
supplemented or modified by other factors such as leaf traits that 
drive photosynthetic and whole plant growth rates (Enquist et al., 
2015; Lavorel & Garnier, 2002; Reich, Walters, & Ellsworth, 1992; 
Reich et al., 1997; Violle et al., 2007) or intensity of disturbances. 
To reflect these influences, we have included fire frequency, human 
land‐use, specific leaf area, leaf nitrogen concentration and leaf 
phosphorus concentration in our evaluation.

Building on the recent theoretical expectations and empirical ev-
idence (Enquist et al., 2015; Michaletz et al., 2014), we predict that 
climate and other environmental variables such as fire frequency and 
human land‐use (disturbances) affect NPP primarily indirectly via their 
effects on tree height (Prediction P1; see Figure 1 for a conceptual 
schema) (McDowell et al., 2018). Specifically, we predict that tree 
height is limited by water availability. Larger trees are closer to hy-
draulic limits that are defined by local precipitation and temperature 
(Bennett, McDowell, Allen, & Anderson‐Teixeira, 2015; Gholz, 1982; 
McDowell & Allen, 2015; Ryan & Yoder, 1997). The basic tenet of the 
“hydraulic limitation hypothesis” is that taller trees exhibit increased 
stomatal closure due to an increase in hydraulic resistance with tree 
height combined with the need to maintain a minimum leaf water po-
tential to avoid catastrophic embolism (Ryan & Yoder, 1997).

The derived values of potential maximum tree height for a cell 
may or may not be realized due to disturbance, climate stress, etc. 
Therefore, we predict (P2) that potential maximum tree height af-
fects NPP indirectly, via its influence on canopy height, and that cli-
mate (P1a) and disturbances (P1b) and their interaction affect NPP 
indirectly by constraining the degree to which canopy height is a 
realization of potential tree height. Climate can also affect potential 
maximum tree height as an environmental filter that prevents estab-
lishment of species not adapted to local conditions.

Finally, we predict (P3) NPP to be affected by leaf traits that are 
driven by climate or soil nutrient concentration. Specifically, NPP 
should increase with increasing specific leaf area and leaf nitrogen 
concentration as these influence rates of photosynthesis and whole 
plant growth (Enquist et al., 2015; Reich et al., 1997; Violle et al., 

2007; Wright et al., 2004). NPP should also increase with increas-
ing leaf phosphorus concentration, particularly in tropical forests 
(Mercado et al., 2011; Tanner, Vitousek, & Cuevas, 1998). Leaf ni-
trogen and phosphorus concentration should be driven by the con-
centrations of these nutrients in the soil, which can be partly driven 
by climate (Hedin, 2004; Reich & Oleksyn, 2004). Specifically, we 
predict soil phosphorus availability to decrease with increasing pre-
cipitation because of higher leaching rates. Soil nitrogen availability 
should increase with increasing temperature due to the tempera-
ture‐dependence of the forest nitrogen cycle (Brookshire, Gerber, 
Webster, Vose, & Swank, 2011). As for maximum potential tree 
height, climate can also affect leaf traits directly via environmental 
filtering.

To disentangle the relative importance of climate, disturbances, 
functional traits and soil properties in controlling large‐scale forest 
productivity and to evaluate the interactions among these factors, 
we apply a path analysis framework (see Figure 1a for a conceptual 
schema). Given the possibly different drivers of NPP in different for-
est biomes, we test the above‐mentioned predictions for all forests 
together and for individual biomes separately.

2  | MATERIAL S AND METHODS

2.1 | Species and trait data

We extracted species occurrence records from the BIEN 3.0 da-
tabase (http://bien.nceas.ucsb.edu/bien/). Most of these data are 
publicly available via the BIEN R package (Maitner, 2017) with some 
exceptions such as endangered species and private records (see 
Maitner et al., 2018 for details). We included all plant occurrence 
records having their coordinates georeferenced within the mainland 
areas of the Americas, excluding occurrence data of cultivated spe-
cies. We overlaid the occurrences with a 200 × 200 km grid (projec-
tion was Lambert Azimuthal Equal Area) to obtain a list of species 
for each grid cell. We included only cells with more than 80% of their 
area on land. We restricted our analyses to woody species following 

F I G U R E  1  The conceptual path diagram for the structural equation modelling demonstrating the hypothesized causal relationships of 
climate, disturbances, canopy height (“Canopy”), potential maximum tree height (“H”), leaf traits, and soil nutrient concentration (“Soil”) in 
explaining net primary productivity (“NPP”) of forest assemblages. Solid black lines represent our predictions about the indirect effect of 
climate, disturbances and soil nutrient concentration on NPP via tree size and leaf traits, whereas dashed lines represent alternative direct 
effects of these variables on NPP. We further tested for the possible missing paths in the model, highlighted in grey. Besides the original 
model (a), we added an effect of sub‐biome (b), separating tropical and subtropical moist broadleaf forests from tropical and subtropical dry 
broadleaf forests and temperate broadleaf and mixed forests from temperate coniferous forests

http://bien.nceas.ucsb.edu/bien/
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Engemann et al. (2016) (angiosperm and gymnosperm trees, shrubs 
and lianas; 6,107 species in total).

We obtained plant maximum height, specific leaf area, leaf nitrogen 
concentration and phosphorus concentration data for woody species 
from both the BIEN and TRY (Kattge et al., 2011) databases, resulting 
in 14,451 species‐level trait values. We assigned the trait values to the 
species occurrences resulting in values for maximum height for 2,583 
species, specific leaf area for 2,408 species, leaf nitrogen concentration 
for 2,615 species and leaf phosphorus concentration for 1,754 species 
(see Figure S1 in Appendix S2 for maps of showing spatial the distribu-
tion of trait values). MST predicts that the size (height) of the largest 
individual is a key predictor of whole‐stand productivity. Therefore, 
to calculate potential maximum tree height, we estimated the per‐cell 
95th percentile of maximum tree height. We chose the 95th percentile 
over the maximum value as it reduces the possible effect of outliers. We 

used the mean of per‐cell values of the specific leaf area (SLA), leaf ni-
trogen concentration (leaf N) and leaf phosphorus concentration (leaf P) 
(Figure 2a–d) to characterize assemblage strategies (Enquist et al., 2015; 
Garnier et al., 2004). Due to the low number of species with known trait 
values at some grid cells (mostly boreal forests; Figure S1) we retained 
only those cells with >3 species with known values of each trait.

2.2 | Canopy height

We used the canopy height map derived from the Geoscience Laser 
Altimeter System (GLAS) from collection periods between 2003 and 
2007 (Lefsky, 2010). The map applies to forest patches identified 
with MODIS imagery. Although a more recent map of canopy veg-
etation height has been developed spanning a larger spatial extent 
including non‐forest areas (Simard, Pinto, Fisher, & Baccini, 2011), it 

F I G U R E  2  Maps of the productivity, canopy height and assemblage functional trait values of the forest biomes estimated over the 
200 × 200 km grid‐cells. (a) Potential maximum tree height (“Height”), (b) specific leaf area (“SLA”), (c–d) leaf nitrogen and phosphorus 
concentration (“Leaf N” and “Leaf P”) estimated from woody species occurrences, (e) canopy height (“Canopy”) estimated from the 
Geoscience Laser Altimeter System and (f) net primary productivity (“NPP”) derived from the MODIS data. Note that panels a–d show only 
those cells with >3 species with known values of all four traits and with at least 50% of forest coverage whereas cells on panels e–f are 
restricted only to at least 50% of forest coverage (see also Figure S1 in Appendix S2 for the sampling coverage). See Figure S3 in Appendix 
S2 for maps of all variables used in our models
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models canopy height using both GLAS measurements and climate 
variables (mean annual temperature, annual precipitation and their 
seasonality), and therefore is not appropriate for regression models 
incorporating those same climate variables (see also Tao, Guo, Li, 
Wang, & Fang, 2016). In this map, about 1/4 of all forest patches 
have direct measurements. Those were assigned a value equal to 
the 90th percentile of the GLAS‐based canopy height estimate 
(Lefsky, 2010). Canopy height of patches without direct measure-
ments were estimated by statistical modeling using the values from 
the surrounding patches (Lefsky, 2010). We restricted our analyses 
to cells where >50% of cell area was assigned with non‐null canopy 
height values (i.e. cells with forest coverage >50%). To estimate the 
canopy height variable, we used these non‐null canopy height val-
ues to calculate per‐cell 95th percentile (Figure 2e).

2.3 | Net primary productivity

NPP is a product of the MODIS sensor (Running et al., 2004). It is 
calculated as gross primary productivity (GPP) minus autotrophic 
respiration. GPP is modelled as a function of photosynthetically 
active radiation (PAR), the fraction of PAR absorbed by plants, 
biome‐specific light‐use efficiency, daily minimum temperature and 
vapour pressure deficit (Zhao, Heinsch, Nemani, & Running, 2005; 
Zhao & Running, 2010). Respiration combines maintenance respira-
tion (a function of the daily average air temperature and leaf area 
index) and growth respiration (estimated as a constant proportion 
of total NPP). We averaged the NPP layer (available via http://www.
ntsg.umt.edu/) over the years 2000–2012 and over each grid cell 
(Figure 2f).

2.4 | Environmental data

We included mean annual temperature and annual precipitation 
(1960–1990 means) extracted from the Worldclim database (version 
1.4; www.worldclim.org; Hijmans, Cameron, Parra, Jones, & Jarvis, 
2005). We selected these variables as both temperature (incorporated 
into potential evapotranspiration) and precipitation have been iden-
tified as strong predictors of forest canopy height (Tao et al., 2016), 
and temperature has been found to be the best predictor of mean 
height of woody species assemblages in 200 × 200 km grid squares in 
the Americas (Šímová et al., 2018). To reflect water limitation of plant 
growth, we included the yearly average of the fraction of soil water 
content available for evapotranspiration process (“soil water content” 
hereafter) obtained from CGIAR‐CSI GeoPortal (http://www.cgiar-csi.
org/data; Trabucco & Zomer, 2010). This variable is calculated as a dif-
ference between effective precipitation, actual evapotranspiration 
and water runoff where effective precipitation represents the total 
precipitation minus the precipitation intercepted by vegetation. We 
also included growing season length as another potentially important 
factor limiting forest NPP (Chapin et al., 2011; Michaletz et al., 2018) 
obtained from FAO (The Food and Agriculture Organization; http://
www.fao.org/geonetwork/srv/en/main.home). This variable is de-
fined as the period during the year when average temperatures are 

greater than or equal to 5°C and precipitation plus moisture stored in 
the soil exceed half the potential evapotranspiration and the values are 
grouped into 16 zones.

As our first disturbance measure, we obtained fire frequency 
from Tansey et al. (2008), and averaged this variable over years 
2000–2007. As a second disturbance measure, we quantified human 
land use from the GlobCover 2009 land cover database (http://
due.esrin.esa.int/page_globcover.php). We chose the year 2009 to 
match the period of NPP data measurements (years 2000–2012) and 
canopy height measurements (years 2003–2007). We used the area 
covered by urban areas and all types of croplands (post‐flooding or 
irrigated croplands, rain fed croplands, mosaic cropland and mosaic 
vegetation/cropland) in each grid cell as a measure of the intensity of 
human land use. We obtained soils data from ORNL DAAC (https://
daac.ornl.gov/). We retrieved total soil phosphorus and organic 
soil phosphorus content from the Global Gridded Soil Phosphorus 
Distribution Maps (Yang, Post, Thornton, & Jain, 2014) and used 
these as surrogates of phosphorus available to plants. We retrieved 
topsoil organic carbon content from the Regridded Harmonized 
World Soil Database (Wieder, Boehnert, Bonan, & Langseth, 2014) 
and used this as a negative surrogate for nitrogen available to plants. 
We calculated the mean of climate variables, fire frequency and 
soil variables at 200 × 200 km grid cell size using the package raster 
(Hijmans et al., 2016) in R (R Development Core Team, 2017). See 
Figure S3 in Appendix S2 for maps and units of all variables.

2.5 | Forest biomes

For the grid cells with >50% of forest coverage we assigned the forest 
biomes according to the following protocol. First, we grouped the major 
habitat types recognized by the WWF (World Wildlife Foundation; 
www.worldwildlife.org) and obtained from The Nature Conservancy 
(http://maps.tnc.org/gis_data.html) into three main biomes: (a) tropi-
cal forests (defined as area covered by tropical and subtropical moist 
broadleaf forests, Tropical and subtropical dry broadleaf forests or 
tropical and subtropical coniferous forests), (b) temperate forests (area 
covered by temperate broadleaf and mixed forests or temperate co-
niferous forest) and (c) boreal forests (defined as boreal forests/Taiga). 
Second, for each grid cell, we considered the biome covering the larg-
est area as the dominant biome (Figure S2 in Appendix S2). Given the 
variability in canopy height values within tropical and temperate for-
est biomes, we further define four sub‐biomes based on the WWF 
classification. These are (a) temperate broadleaf and mixed forests, (b) 
temperate coniferous forests, (c) tropical and subtropical moist broad-
leaf forests and (d) tropical and subtropical dry broadleaf forests. We 
omitted the tropical and subtropical coniferous forests sub‐biome due 
to its limited spatial extent (four grid cells).

2.6 | Data analyses

We fit structural equation models (package “lavaan” in R) (Rosseel, 
2012) to assess the distinct effects of potential maximum tree 
height, leaf traits, canopy height, length of the growing season, 

http://www.ntsg.umt.edu/
http://www.ntsg.umt.edu/
http://www.worldclim.org
http://www.cgiar-csi.org/data
http://www.cgiar-csi.org/data
http://www.fao.org/geonetwork/srv/en/main.home
http://www.fao.org/geonetwork/srv/en/main.home
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
https://daac.ornl.gov/
https://daac.ornl.gov/
http://www.worldwildlife.org
http://maps.tnc.org/gis_data.html
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temperature, precipitation, human land‐use and fire frequency on 
NPP. We loge‐transformed human land‐use and fire frequency to 
improve normality. We checked for collinearity among variables 
using the variance inflation factor (VIF) where small VIF values 
indicate a low degree of collinearity. Some researchers recom-
mend that the VIF of each variable entering the model be lower 
than 10 (Dormann et al., 2013), and others recommend VIF less 
than 5 (Hair, Ringle, & Sarstedt, 2011), or under ideal conditions 
even less than 3 (Hair, Risher, Sarstedt, & Ringle, 2018). In tropical 
forests all variables had VIF <10 and most of them had VIF <5. To 
meet similar VIF levels in temperate and boreal forests and across 
all forests we fit separate models using either temperature and 
water deficit (results presented in the main text) or precipitation 
and length of the growing season (results presented in Appendix 
S3). Although not all variables were perfectly independent of each 
other, all of them were theoretically motivated and we aimed to 
avoid too many alternative models.

We first ran the model with all solid black and dashed links 
as presented in Figure 1a. Here, solid black lines represent our 
predictions (P1–P4) about the indirect effect of climate, human 
land‐use and fire on NPP via tree size and leaf traits. Dashed lines 
represent alternative direct effects of climate, human land‐use and 
fire. To obtain the best‐fit model we took a stepwise approach and 
removed weak and non‐significant links and evaluated the model 
parameters at each step. Specifically, we aimed to (a) identify non‐
significant p‐values of the Chi‐squared test reflecting the prob-
ability of failing to reject the model given the data, (b) minimize 
the BICc (sample size‐adjusted Bayesian Information Criterion) and 
the Root Mean Square Error of Approximation (RMSEA) and (c) 
maximize the Comparative Fit Index (CFI) and Tucker‐Lewis Index 
(TLI) (Bollen, Harden, Ray, & Zavisca, 2014). We also checked for 
possible missing paths in the model according to the modification 
indices (µ) that represent the reduction in the Chi‐squared value 
after adding the missing path; paths with µ > 3.84 (corresponding 
to the Chi‐square statistic value of p = 0.05) were retained. We 
tested for missing paths between traits and disturbances (fire fre-
quency, human land‐use). These two predictors were not included 
in our original model because of mismatched temporal scales; 
plant species occurrence records were collected over a much lon-
ger time period than were the data underpinning the disturbance 
layers. Also, given that satellite data estimate of canopy height can 
be biased (Mitchard et al., 2014), we additionally explored a di-
rect effect of potential maximum tree height on NPP acting inde-
pendently of canopy height. We performed these analyses for all 
forests and then for tropical, temperate and boreal forest biomes 
individually.

In analyses focused on tropical and temperate forests, we ac-
counted for a sub‐biome effect (moist and dry tropical forests, 
coniferous and deciduous temperate forests). We predict (P4) the 
sub‐biome to mirror climate effects, in part, and to also reflect dif-
ferences in evolutionary history, topography or edaphic conditions 
that can affect NPP directly or indirectly via their effects on canopy 
height or the traits of species assemblages (Figure 1b).

3  | RESULTS

Across all forest biomes (Figure 3a, see also Figure S4 in Appendix 
S3), NPP increased with increasing canopy height (in accordance with 
P1). Also, potential maximum tree height affected NPP indirectly via 
canopy height (in accordance with P2) and there was a positive link 
between potential maximum tree height and both soil water content 
(P2) and temperature. Still, the strongest NPP determinant was leaf 
N (in accordance with P3), while both temperature (with positive ef-
fect) and soil water content (with negative effect) affected NPP indi-
rectly via leaf N (P3b). Unexpectedly (P3a), we did not find a support 
for a link between leaf N and soil nutrients. NPP further increased 
with increasing soil water content and temperature. When growing 
season length and precipitation were substituted for temperature 
and soil water content (Figure S5a in Appendix S3), the growing sea-
son length became the strongest predictor of NPP (with positive ef-
fect) and of canopy height (with negative effect). Also, precipitation 
became the strongest determinant of potential maximum tree height 
(in accordance with P2) and there was a new negative link between 
topsoil organic carbon content and leaf N (in accordance with P3a). 
Other relationships were consistent with the first model.

In tropical forests (Figure 3c, Figure S6 in Appendix S3), NPP 
increased with increasing canopy height (in accordance with P1), 
and also, potential maximum tree height affected NPP indirectly 
via canopy height (in accordance with P2). NPP further increased 
with increasing leaf P (in accordance with P3). As predicted (P1, 
P2 and P3b), climate had an indirect effect on NPP via plant traits. 
Specifically, potential maximum tree height increased with increas-
ing soil water content, leaf P increased with decreasing precipitation, 
and both canopy height and leaf P increased with decreasing tem-
perature. Leaf P further increased with increasing total soil phospho-
rus concentration (in accordance with P3a). Still, besides the indirect 
effect of climate, NPP of tropical forests strongly increased with in-
creasing soil water content and growing season length while it also 
decreased with increasing precipitation. After accounting for moist 
and dry tropical sub‐biome, sub‐biome became an important predic-
tor of NPP, canopy height, potential maximum tree height and leaf 
P as expected (P4) and the link between NPP and growing season 
length disappeared (Figure 3d); otherwise relationships were consis-
tent with the first model.

When analysed across temperate forests (Figure 3e, see also S7 
in Appendix S3), we did not find support for our prediction of the 
positive link between NPP and canopy height (P1). Also, the effect 
of leaf traits on NPP was unimportant. Instead, NPP increased with 
increasing temperature and soil water content. Lack of support for 
P1, however, was largely driven by the difference between broadleaf 
and coniferous sub‐biome. Support for P1 was observed after con-
trolling for the effect of sub‐biome, when we found a significant pos-
itive missing path between NPP and potential maximum tree height 
(Figure 3f). The non‐significant effect of canopy height on NPP 
was largely driven by coniferous sub‐biome (Figure S7) where can-
opy height often exceeded potential maximum tree height (Figure 
S8 in Appendix S3) possibly due to the increasing uncertainty of 
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satellite‐based canopy height measurements with increasing terrain 
rugosity (Lefsky, 2010). Furthermore, both leaf N (with positive ef-
fect) and leaf P (with negative effect) became important predictors 
of NPP in temperate forests, and climate had an indirect effect on 
NPP via these traits (P3b). Specifically, leaf N increased with increas-
ing temperature and both leaf N and leaf P decreased with increasing 
soil water content. Contrary to our expectation (P3a), soil variables 
had no significant effects on leaf traits. Still, sub‐biome became the 
strongest determinant of NPP, canopy height and potential maxi-
mum tree height. When using growing season length and precipi-
tation instead of temperature and soil water content, precipitation 
became an important predictor of leaf N, leaf P and potential maxi-
mum tree height (Figure S5c–d); otherwise results remained qualita-
tively similar to the first model.

In boreal forests, temperature was the only predictor of both 
NPP (with positive effect) and canopy height (with negative effect) 
(Figure 3b, see also Figure S9 in Appendix S3) and none of our pre-
dictions concerning plant traits (P1, P2 and P3) were supported. 
These results could be affected by the low sample size (n = 25) 
caused by the low number of cells with >3 species with known val-
ues of all traits. Therefore, we repeated the analysis without traits 
using all grid cells with boreal forest cover >50% (n = 58). Still, the 
results remained qualitatively similar, except that NPP also increased 
with increasing total soil phosphorus concentration (Figure S10a in 
Appendix S3). When growing season length and precipitation were 
substituted for temperature and soil water content, NPP strongly 
increased with increasing growing season length. It also weakly in-
creased with increasing precipitation (Figures S5b and Figure S10b).

F I G U R E  3  Structural equation models representing connections between productivity, canopy height and assemblage functional traits 
values for all forests together (a), boreal forests (b), tropical forests without (c) or with (d) sub‐biomes included, and temperate forests 
without (e) or with (f) sub‐biomes included. “MAT” is temperature, “MAP” is precipitation, “SWC” is soil water content, “GSL” is growing 
season length, “Land‐use” is human land‐use, “Fire” is fire frequency, “Canopy” is canopy height, “H” is potential maximum tree height, “Leaf 
N” is leaf nitrogen concentration, “Leaf P” is leaf phosphorus concentration, “Soil P” is total soil phosphorus concentration and “NPP” is net 
primary productivity. Sub‐biome is coded as 0/1 for moist/dry tropical forests and for coniferous/broadleaf temperate forests respectively. 
Significant links are represented by solid arrows, non‐significant links (p > 0.05) are represented by dashed arrows and error covariance is 
represented by dotted arrows. Positive links are black, negative links are red. The numbers next to each arrow are standardized coefficients. 
See Table 1 for the model results summary and Figure S4, S6–7, S9 for bi‐variate relationships of each variable plotted against NPP. See also 
Figure S5 for models with growing season length and precipitation instead of temperature and soil water content
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To evaluate whether models including traits improve predictions 
of NPP over those based on climate alone, we additionally compared 
three sets of models: (a) Partial mediation models where climate af-
fects NPP both directly and indirectly via functional traits, (b) No me-
diation models where traits do not explain the association between 
climate and NPP, and (c) Complete mediation models where traits 
completely explain the variation in NPP and climate has only indirect 
effect (see Figure S11 as an example). We performed this analysis only 
for those biomes where traits were selected as important productivity 
predictors, specifically where Partial mediation models were selected 
by the model evaluation procedure (Figures 3a,c–d,f, S5a,d). For the 
No mediation model we used the Partial mediation model structure 
and set all parameters between traits and NPP to zero. To build the 
Complete mediation models we removed all direct links between cli-
mate (temperature, precipitation, soil water concentration and grow-
ing season length) and NPP. We compared the model fit according to 
the AIC and Chi‐square statistics. In all cases Partial mediation models 
provided the best explanation of the data (Table S3).

4  | DISCUSSION

We found that productivity of American tropical and temperate for-
ests is jointly affected by climate, plant size and leaf nutrient traits, 
but through differing direct and indirect paths. In boreal forests 
neither tree size nor leaf traits appeared as important predictors 
of productivity. Instead, productivity in boreal forests was driven 
by a direct role of temperature. Together, these results are largely 
consistent with theoretical expectations and recent empirical evi-
dence (Enquist et al., 2015; Michaletz et al., 2014) where tree size is a 
central trait affecting carbon flux and biomass production in mature 
forests. Our results further underscore that more stressful climates 
likely modify these theoretical predictions at higher latitudes. Our 
results also agree with recent evidence of nutrient availability as an-
other important regulator of forest carbon flux (Fernández‐Martínez 
et al., 2014).

The finding that productivity of tropical forests increased with 
the height of the tallest trees is consistent with the previous obser-
vations that tree size is an important predictor of biomass production 
in this biome (Bastin et al., 2015; Fauset et al., 2015; Finegan et al., 
2015). Our findings also agree with Michaletz et al. (2014), Michaletz 
et al. (2018) who concluded that climate affects productivity of for-
est plots indirectly, acting via stand biomass (see also Enquist, 2011). 
Here, we found a positive indirect link between water availability 
(expressed as precipitation and soil water content) and productivity 
acting via potential maximum tree height, and a negative indirect 
link between temperature and productivity acting via canopy height. 
This is consistent with the hydraulic limitation hypothesis (Ryan & 
Yoder, 1997) as decreasing water availability and increasing tem-
perature increase the probability of drought embolism in tree hy-
draulic pathways (McDowell & Allen, 2015).

Our results indicate that tropical forest productivity is strongly 
influenced by water availability. Soil water content had a direct TA
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positive effect on tropical productivity and this link was stronger 
than the indirect path via plant size. In addition to the role of tree 
size and soil water content, tropical productivity increased with in-
creasing leaf phosphorus concentration, driven by both climate and 
soil phosphorus concentration. This agrees with our prediction and 
with evidence of phosphorus as a key nutrient influencing produc-
tivity in warm and wet tropical lowland forests (Quesada et al., 2012; 
Vitousek, 1984). Unexpectedly, productivity of tropical forests fur-
ther decreased with increasing precipitation. This relationship is, 
however, largely driven by the sites of high precipitation (>3 m) that 
are not the most productive (Figure S6). The highest precipitation 
occurs in northern part of the Amazon (Figure S3) whereas the most 
productive sites are in the foothills of the Andes (Figure 2). Such NPP 
patterns could result from the lower plant respiration rates caused 
by the lower temperature in higher altitudes. Lower productivity 
at sites of highest rainfall can also result from higher rates of soil 
weathering and nutrient leaching (Quesada et al., 2012). At the same 
time, higher tree mortality and turnover rates may lead to higher 
rates of carbon flux at sites with lower rainfall as a result of higher 
soil disturbances and episodic drought (Malhi et al., 2015; Quesada 
et al., 2012). Still, the variation explained in productivity of tropical 
forests was rather low compared to temperate and boreal forests, 
suggesting that we were missing some other important factor such 
as climatic or topographic heterogeneity, climate velocity or the ef-
fect of tree plantations.

In temperate forests, we found support for our prediction that 
tree size positively affects productivity only when we accounted 
for coniferous and deciduous sub‐biomes. Still, whereas produc-
tivity increased with increasing potential maximum tree height, the 
link between canopy height and productivity was unexpectedly not 
significant. It is, therefore, possible that other factors than realized 
tree height, such as past land‐use legacies, leaf area index or nutrient 
limitation play, important role in carbon cycle of temperate forests 
(Coomes et al., 2012; Waring, 1983).

Consistent with the observation that nitrogen limitation on pro-
ductivity is more pronounced in temperate than tropical regions 
(but see LeBauer & Treseder, 2008; Reich & Oleksyn, 2004), we 
found a strong positive link between leaf nitrogen concentration 
and temperate forest productivity. Our finding that leaf nitrogen 
concentration strongly increased with increasing temperature is 
consistent with the temperature‐dependence of the forest nitro-
gen cycle (Brookshire et al., 2011). In contrast to tropical forests, 
productivity of temperate forests decreased with increasing leaf 
phosphorus, a relation largely driven by the deciduous sub‐biome 
(Figure S7). Although phosphorus availability certainly limits plant 
growth in temperate forests (Wardle, Walker, & Bardgett, 2004), 
this finding can be interpreted as an adaptive response of plants 
to selection on fast growth rate (thus on high phosphorus demand) 
during the short vegetation season at high latitudes and altitudes 
(Kerkhoff, Enquist, Elser, & Fagan, 2005) where the productivity is 
generally low (Figure 2f). Also, younger soils of temperate forests are 
richer in phosphorus relative to nitrogen available to plants, with the 
consequence that nitrogen availability generally drives production 

in this sub‐biome (Vitousek, Porder, Houlton, & Chadwick, 2010; 
Walker & Syers, 1976). Alternatively, this finding could result from 
an indirect effect of precipitation leaching soil phosphorus on older 
soils at lower latitudes (see also Šímová, Rueda, & Hawkins, 2017). 
Besides the indirect effect of climate (acting via potential maximum 
tree height and leaf traits), productivity of temperate forests also 
increased with increasing mean annual temperature, suggesting the 
direct effect of stressful climate on photosynthetic rates. Still, the 
strongest productivity predictor was the effect of the sub‐biome. 
This indicates that coniferous forests are on average less produc-
tive, given their canopy height, in comparison to deciduous forests 
(except of the relatively small area of highly productive forests of 
the North American pacific coast), which also corresponds to their 
relatively low carbon‐use efficiency (DeLucia, Drake, Thomas, & 
Gonzalez‐Meler, 2007).

In contrast to tropical and temperate forests, temperature was 
the only productivity determinant in boreal forests and we did not 
find any evidence for the effect of plant size or leaf traits. This find-
ing deviates from a previous plot‐based study showing that biomass 
production increases with the stand biomass, particularly in low‐
productivity boreal and montane forests (Keeling & Phillips, 2007). 
We suspect that the correlation between stand biomass and pro-
ductivity of boreal forests observed by other studies (Jenkins, 2015; 
Keeling & Phillips, 2007) may be only indirect and could result from 
the effect of temperature limiting both these variables, but more 
studies are needed to confirm this hypothesis.

Despite the comprehensive datasets, our results may be affected 
by several important potential biases. First, our study is based on 
relatively coarse spatial grain leading to the relatively low number 
of cells with at least 50% forest coverage, in turn resulting in omit-
ting some forest areas such as Rocky Mountains and Sierra Nevada 
in USA and Sierra Madre in Mexico. Also, at such spatial grain we 
cannot capture fine‐scale influences, such as topography and for-
est development stages, which are key determinants of productivity 
(e.g. Michaletz et al., 2014). Nevertheless, this resolution avoids the 
false absence problem caused by the clumped distribution of species 
occurrence data and is generally recommended in macroecological 
studies (Hurlbert & Jetz, 2007).

A second potential issue is sampling bias; there were gaps in 
spatial coverage of tree occurrences in both the Amazon Basin 
and Canada (Figure S1), which may have generated some of the 
outlying values in grid‐cell 95th percentile and average of trait val-
ues. A possible solution to avoid the sampling bias would be to use 
modelled species range maps. Nevertheless, the disadvantage of 
species range maps is that they are modelled in part using climate 
variables (Goldsmith et al., 2016), which could generate some level 
of circularity in analyses with climate as an explanatory variable. 
Also, for trait values, we were missing many records, especially 
from the Amazon Basin, which could also have biased our results. 
Still, as we showed in a previous study (Šímová et al., 2018), the 
trait‐climate correlations of woody species are robust to this sam-
pling bias. Some uncertainty also concerns canopy height due 
to the necessary extrapolation of the spatially separated point 
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measurements (Tao et al., 2016), and also due to its inaccurate 
estimate with increasing terrain rugosity (Lefsky, 2010; Simard et 
al., 2011). Moreover, the ability of satellite‐based canopy height 
in predicting above ground biomass (and thus also NPP) may be 
biased due to missing information of variation in wood density and 
tree allometry (Mitchard et al., 2014).

We suggest that our findings should be reexamined when bet-
ter, large‐scale trait and canopy data become available. Similar 
problems may also affect the MODIS‐based productivity estimate, 
which is modelled based on remote sensing, solar radiation, tem-
perature and water vapour deficit (Running et al., 2004; Zhao et 
al., 2005), potentially leading to some circularity in analyses with 
climate. Moreover, the MODIS‐based productivity model does not 
explicitly account for the effect of soil nutrients as one of the fac-
tors limiting plant growth, which leads to some uncertainty of the 
productivity estimates, especially in tropical regions (Cleveland et 
al., 2015; Šímová & Storch, 2017). Large‐scale soil data also can be 
problematic as they are generated with relatively high uncertainty 
(Yang, Post, Thornton, & Jain, 2013), which can be responsible 
for the overall weak support for the links between leaf and soil 
nutrients. Another potential problem concerns the data analysis. 
Although structural equation modelling (SEM) is a powerful data–
analytic technique, selecting the model that best fits the data 
can result in some degree of selection uncertainty (Whittingham, 
Stephens, Bradbury, & Freckleton, 2006). This is due to the depen-
dency of model rankings on sample size (Preacher & Merkle, 2012). 
Consequently, it is important that our results be reevaluated when 
more data are available, especially from other parts of the world. 
Lastly, as our study is restricted to forests, we recommend future 
studies explore the link between plant functional traits and large‐
scale ecosystem processes in non‐forest biomes.

In summary, our results point to the importance of tree size 
as a driver of forest productivity. We found that water availability 
limits productivity of tropical and temperate forests, both directly 
and indirectly via the maximum size to which tree species can grow. 
This finding agrees with the Metabolic Scaling Theory (West et al., 
2009) and with recent evidence for tall trees as important drivers 
of forest carbon flux (Fauset et al., 2015; Stephenson et al., 2014). 
Furthermore, we found that productivity of tropical and temperate 
forests strongly depends on the leaf nutrient concentration, which 
is also largely driven by climate. Our results support recent attempts 
to include information on plant functional traits in models predict-
ing dynamics of the global carbon cycle (Reichstein, Bahn, Mahecha, 
Kattge, & Baldocchi, 2014). Nevertheless, the importance of plant 
traits is not universal, or is at least context dependent, as different 
processes matter more in different environmental contexts.
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