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Summary

� Leaf vein network geometry can predict levels of resource transport, defence and mechani-

cal support that operate at different spatial scales. However, it is challenging to quantify net-

work architecture across scales due to the difficulties both in segmenting networks from

images and in extracting multiscale statistics from subsequent network graph representations.
� Here we developed deep learning algorithms using convolutional neural networks (CNNs)

to automatically segment leaf vein networks. Thirty-eight CNNs were trained on subsets of

manually defined ground-truth regions from >700 leaves representing 50 southeast Asian

plant families. Ensembles of six independently trained CNNs were used to segment networks

from larger leaf regions (c. 100 mm2). Segmented networks were analysed using hierarchical

loop decomposition to extract a range of statistics describing scale transitions in vein and are-

ole geometry.
� The CNN approach gave a precision-recall harmonic mean of 94.5% � 6%, outperforming

other current network extraction methods, and accurately described the widths, angles and

connectivity of veins. Multiscale statistics then enabled the identification of previously unde-

scribed variation in network architecture across species.
� We provide a LEAFVEINCNN software package to enable multiscale quantification of leaf vein

networks, facilitating the comparison across species and the exploration of the functional sig-

nificance of different leaf vein architectures.

Introduction

Plant leaves are structured by a vein network that ranges in geom-
etry from dendritic fans with few branches and no loops (e.g.
Ginkgo biloba) to hierarchical forms with many loops (e.g. Acer
saccharum) (Trivett & Pigg, 1996; Roth-Nebelsick et al., 2001).
The vein network has multiple roles that include transport of
water, nutrients and sugars through the xylem and phloem tissues
(Brodribb et al., 2010; Carvalho et al., 2018; Katifori, 2018),
controlled deformation during bud burst (Niklas, 1999), and
mechanical support and resistance to damage in the mature leaf
(Sack & Scoffoni, 2013; Sharon & Sahaf, 2018). Measurements
of vein architecture have provided insights into leaf development
(Kang & Dengler, 2004) and evolution (Boyce et al., 2009; Bro-
dribb & Feild, 2010), prediction of leaf carbon and water fluxes
(Sack & Frole, 2006; Brodribb et al., 2007; Brodribb et al.,
2010), prediction of environmental and stress tolerances of
species (de Boer et al., 2012; Blonder & Enquist, 2014; Brodribb

et al., 2016) and reconstruction of paleo-environments from leaf
fossils (Manze, 1967; Uhl & Mosbrugger, 1999; Blonder et al.,
2014). Venation networks are also relevant to test theories of
optimal branching structure and transportation efficiency for dif-
ferent network architectures (Pelletier & Turcotte, 2000; Price
et al., 2012; Price et al., 2014; Price & Weitz, 2014), particularly
in response to fluctuating loads or robustness to damage (Dodds,
2010; Katifori et al., 2010; Katifori, 2018).

Prediction of function is based on statistics estimated from
images of vein networks (Roth-Nebelsick et al., 2001). Networks
have veins of different orders, varying from primary veins (at-
tached to the petiole), to secondary (attached to the primary
veins), and continuing until the ultimate veins are reached. The
vein density (vein length per unit area) at each order, or across all
orders, is therefore a key statistic (Uhl & Mosbrugger, 1999; Sack
& Scoffoni, 2013). Measurement of the distribution of vein radii
is required to determine the vein order (Price et al., 2012), which
is itself challenging. Alternatively, vein orders can be extracted
using hierarchical vein classification methods (Gan et al., 2019).
If vein radii can be extracted reliably, they can also be used to*These authors contributed equally to this work.
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estimate network construction costs (John et al., 2017) or to pre-
dict maximum fluxes and resource flow rates (Brodribb et al.,
2007; McKown et al., 2010). Many networks also contain loops
that partition the lamina into increasingly small areoles. For
higher vein orders, qualitative terms to describe patterning, such
as craspedodromous or camptodromous, have traditionally been
used (Hickey, 1979; Ellis et al., 2009). Quantitatively, the num-
ber of areoles per unit area provides a statistic for the amount of
‘loopiness’ (Blonder et al., 2011). More detailed analysis of the
nesting of loops within higher-order loops can be achieved using
hierarchical loop decomposition (HLD), which constructs a
binary branching tree representing the order in which adjacent
areoles become connected as the intervening veins are removed
(Katifori et al., 2010; Katifori & Magnasco, 2012; Ronellenfitsch
et al., 2015; Katifori, 2018). HLD provides a range of metrics
such as the Horton–Strahler index, bifurcation ratio and subtree
asymmetry by analogy to river network analysis (Katifori & Mag-
nasco, 2012; Mileyko et al., 2012; Ronellenfitsch et al., 2015;
Katifori, 2018). Some venation networks contain freely ending
veins (FEVs) that do not form anastomoses with other veins, but
which may help with the efficient supply of water (Fiorin et al.,
2016), or possibly the transport of sugars (Carvalho et al., 2018).
As such, density estimates of branching end-points or areole
perimeter/area ratios (Kang & Dengler, 2004; Blonder et al.,
2018) are also useful. Finally, the distribution of branching
angles and radius or length ratios at vein branching points (Bohn
et al., 2002) feed into theories and models of flow efficiency, net-
work development and architecture (Pelletier & Turcotte, 2000;
Price et al., 2012, 2014).

Calculating these metrics requires accurate segmentation of the
venation network over a range of scales. The finest veins are typi-
cally around 10–20 µm diameter, whilst the largest veins can
reach mm width in a lamina up to m2 in area. To capture the fine
veins, networks are typically imaged after chemical clearing and
staining using light microscopy or flat-bed scanning (Pérez-Har-
guindeguy et al., 2013). X-ray imaging can also achieve high reso-
lution with no tissue preparation, but requires access to suitable
equipment (Wing, 1992; Blonder et al., 2012; Schneider et al.,
2018). Regardless of the imaging method, accurate segmentation
of the network from the image has been challenging. Images
often have limited or uneven contrast, or contain unavoidable
artefacts caused by other tissues and cell types such as trichomes
or glands. Furthermore, field material often includes damaged
regions. As a result, simple intensity-thresholding is rarely ade-
quate to yield useful segmentations. Several computer programs
have addressed this challenge, typically using local or global
enhancement filters tuned to pick out vein-like structures, either
with or without human supervision. These include PHENOVEIN

(Bühler et al., 2015), NET (Lasser & Katifori, 2017), LEAFGUI
(Price et al., 2011), LIMANI (Dhondt et al., 2012), as well as other
studies that have not provided code (see for example Bohn et al.,
2002; Mounsef & Karam, 2012; Larese et al., 2014; Parsons-
Wingerter et al., 2014; Gan et al., 2019). Other packages include
machine learning methods to perform segmentation, for example
NEFI (Rother et al., 2004; Dirnberger et al., 2015; Grinblat et al.,
2016), although these require extensive user interaction to

iteratively define and correct foreground and background parti-
tioning, and have only been applied to simple leaf vein networks
(Carvalho et al., 2017).

However, in our experience, none of these segmentation algo-
rithms is robust in that it can be accurately applied across a wide
range of species and image qualities, particularly for field-col-
lected specimens, without considerable expert human guidance.
Most methods are either highly tuned for specific applications,
for example Arabidopsis thaliana (Bühler et al., 2015), or require
the adjustment of many parameters to produce an acceptable out-
put (e.g. Price et al., 2011). Even in the best case scenarios, when
these algorithms correctly classify the majority of pixels, they may
fail to accurately reconstruct the topology of the network, falsely
connecting or disconnecting veins, or producing incorrect vein
radii. The difficulties with automated segmentation are well
recognised with most studies preferring hand-traced images (e.g.
Rolland-Lagan et al., 2009). Indeed, current methods handbooks
only recommend expert hand-tracing to estimate venation net-
work properties (Pérez-Harguindeguy et al., 2013). Nevertheless,
whilst hand-tracing is accurate, it is slow and time intensive, lim-
iting the throughput of samples and restricting the area of leaf
analysed.

Here we developed an alternative deep learning method to seg-
ment minor vein networks from high-resolution cleared leaf
images. The approach was motivated by our observation that
humans can trace venation networks consistently and accurately
after minimal training, despite low contrast and the presence of
many artefacts in the underlying images. We therefore describe
an approach for training an ensemble of convolutional neural
networks (CNNs) to learn how to carry out this segmentation
task based on ground-truth (GT) tracings previously made by
humans from field-collected leaves of tropical rainforest trees.
The trained CNNs are provided within the LEAFVEINCNN soft-
ware package, which can be applied to any high-resolution
cleared leaf image.

Materials and Methods

Leaf vein imaging

A set of calibration leaves was sampled from eight permanent
forest plots in Sabah state, Borneo, Malaysia (Riutta et al., 2018),
and which were characterised by a mixed dipterocarp lowland
forest. In total, 727 samples were obtained from 295 species (50
families). The sampling protocols and nonvein datasets have been
described previously (Both et al., 2019) and the complete set of
vein images published (Blonder et al., 2019).

A 1 cm2 sample was cut from the middle of the lamina,
excluding any primary veins, chemically cleared, stained, and
slide-mounted following standard protocols (Pérez-Harguin-
deguy et al., 2013; Blonder et al., 2018). Each sample was imaged
using a compound microscope (Olympus, BX43) with a ×2
apochromat objective and an Olympus SC100 colour camera
(3840 × 2748 pixel resolution). Here, 9–16 overlapping image
fields were stitched together to obtain a complete image of the
sampled area using the IMAGE CAPTURE software. Final images
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had a resolution of 595 pixels mm−1 and a typical extent of c.
7000 × 7000 pixels.

Images were preprocessed by retaining the green channel
(which had the greatest contrast), and applying contrast-limited
adaptive histogram equalisation (CLAHE; Zuiderveld, 1994),
with a 400 × 400 pixel window and a contrast limit of 0.01.

GT tracing

All veins within a polygonal region-of-interest (ROI) of c. 700 ×
700 pixels were traced manually at full width for each image,
using a digitising tablet (Cintiq 22HD, Wacom) and image pro-
cessing software (GIMP). In addition, any veins in the complete
image with width >200 µm were manually traced, as these veins
were not routinely included in the GT-ROIs used to train the
CNNs. Inclusion of manual large veins avoided over-segmenta-
tion of texture within the larger veins, which were occasionally
recognised by the CNN as separate veins. Alternatively, we used
down-sampled images with the same CNN to automatically seg-
ment larger veins at full width. Lastly, a separate mask was traced
manually to exclude damaged or background regions from the
full image.

Each tracing required c. 30 min. of human time. Each image
layer in GIMP (i.e. the ROI, large vein or mask) was drawn by a
single person and was reviewed and subsequently edited by two
or three other people until consensus was reached, to give a final
set of 727 GT images.

CNN segmentation using U-Net

CNNs are a deep learning method that allows automated extrac-
tion of features from images (Krizhevsky et al., 2012; LeCun
et al., 2015). They differ from classic machine learning methods
in that they synthesise information at multiple scales via a
sequence of convolution, pooling and up-sampling operations.
Convolution–deconvolution networks, such as U-Net (Ron-
neberger et al., 2015), use a set of rectangular kernels that picks
up different features in the image at each scale, and that are then
pooled and combined in each network layer to ultimately yield
pixel-level classifications. ‘Deep’ neural networks include multi-
ple convolutional layers whilst ‘learning’ occurs via a backpropa-
gation algorithm (Werbos, 1974) that optimises the weights of
the network by comparing the output result to the GT.

We used a CNN based on the U-net architecture (Ron-
neberger et al., 2015). The first convolutional layer comprised 32
small (3 × 3) kernels that were convolved with the image to give
32 feature maps (Fig. 1). The feature maps were batch-nor-
malised to give a mean of zero and variance of 1 to speed up
training (Ioffe & Szegedy, 2015), followed by nonlinear rectifica-
tion (ReLU) that sets negative inputs to zero to improve training
performance (Glorot et al., 2011). A second convolution using
another set of 32 small (3 × 3) kernels was used to increase the
receptive field in this layer (Simonyan & Zisserman, 2014), fol-
lowed by batch-normalisation and ReLU (Fig. 1). The size and
resolution of the input feature maps and the output feature maps
were preserved when passing through the convolutional blocks,

with padding applied during convolutions. To generate the next
layer, the output from each convolution block was subject to
nonlinear down-sampling using the maximum from a (2 × 2)
pixel window with a stride of 2, effectively halving the resolution
of the feature maps in both dimensions. This gave five levels of
feature maps in the down-sampling arm of the network that pro-
vided increasingly higher-level representation of the input image
patches.

We also followed the approach of U-Net and Fully Convolu-
tional Networks (FCN) (Long et al., 2015), and kept the same
number of feature maps for layers with the same resolution,
whilst doubling the number of feature maps when the resolution
was halved by down-sampling, and halving the number of feature
maps when resolution was doubled in the up-sampling arm. The
feature maps at each down-sampled layer were also copied and
concatenated with those at the same resolution in the up-sam-
pling arm, to give feed-forward shortcut connections that
retained the high-resolution information required to yield a per-
pixel output (Long et al., 2015). The activation function of the
final fully connected output layer was sigmoid and gave a 1 : 1
pixel classification of the vein probability. This resulted in nine
convolutional blocks in total (Fig. 1).

Data augmentation and training data sets

The manually digitised GT images were used to train and evalu-
ate the CNN. Each GT region was resampled to augment the
training data and to prevent over-fitting. In total, 32 samples per
image, fully contained within the GT region, were extracted with
randomised variation in the box size (256 × 256�20% pixels),
rotation angle (between 0 and 2π radians), (x, y) shift in centroid
coordinates, and randomised image reflection. Augmented sam-
ples were then resized to 256 × 256 pixels (Fig. 2).

Network training

The CNN was initialised using the Glorot uniform initialiser
with random weights drawn from a uniform distribution (Glorot
& Bengio, 2010). At the start of each training run, 120 nonover-
lapping images were reserved as the test data set. For each train-
ing epoch, 480 leaf images were randomly selected from the
remaining images and the manually digitised ROIs used as train-
ing samples. The remaining 120 images were used to validate the
network performance. The trained CNN was then used to seg-
ment the set of 120 full-size test images that had not been used in
training or validation. This required seven iterations to segment
all of the original full-size images. The process was repeated to
give an ensemble of six independently trained networks for each
image (Hansen & Salamon, 1990; Sollich & Krogh, 1996). A
flow diagram of the process is shown in Fig. 2. Of the 727 sam-
ples in the dataset, seven had digitised regions that were too small
for image patch extraction, and which were excluded from train-
ing, but were still used for validation. At each training iteration, a
mini-batch of eight 256 × 256 patches, constrained by the mem-
ory limit of each graphical processing units (GPU), was sampled
and fed to the network in sequence to ensure robust convergence
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by avoiding local minima. The pixel-wise cross-entropy was used
as the loss function during training, and the Dice similarity met-
ric was used for network selection. Networks were typically
trained for 20–40 epochs, in which an epoch was a complete run
through one set of 480 × 32 samples, with a new training dataset
used at each epoch (giving 480 × 32 × 40 augmented training
samples) until the error asymptotically approached a stable value
with < 0.1% variation.

The U-Net algorithm was run on one of two clusters, either
with 2× Intel E5-2609v2 processors (total eight cores at 2.5

GHz, 128 GB RAM), or 2× Intel E5-2609v3 processors (total
12 cores at 1.9 GHz, 128 GB memory). Image processing
occurred in parallel on three GPUs (nVidia, GeForce GTX 1080
Ti, each with 3580 cores and 11 GB memory). All CNN code
was implemented in KERAS with TENSORFLOW using PYTHON 3.
Training the CNN on the calibration data required 8 min per
epoch using three GPUs and one central processing unit (CPU).

The trained networks were also imported into MATLAB (Math-
works, Natick, MA, USA) for incorporation into a graphical user
interface (GUI) interface (software and manual available from

Copy
Up-sample
Max-pool
Conv Block

Conv Batch 
Norm Conv Batch 

NormReLU ReLU

Fig. 1 Schematic diagram of the U-Net convolutional neural network (CNN) architecture. Each layer in the CNN is built from two concatenated blocks
comprising a convolution layer, followed by batch-normalisation and nonlinear rectification (ReLU). This is followed by 2×2 max pooling to reduce the
scale in the down-sampling arm (left). In addition, a copy of the output of the convolution block is appended to the up-sampling arm (right) at the same
level that retains the high-resolution information required to yield per-pixel outputs. The final layer is fully connected and provides a probability
classification into vein or nonvein pixels using a sigmoid function.

Fig. 2 Flow diagram of the major steps in convolutional neural network (CNN) training, segmentation and analysis. At each iteration, one set of 120
nonoverlapping images is reserved for prediction and network extraction (green boxes). At each training epoch (blue boxes), 480 images were selected at
random for training from the remainder, and a further 120 reserved for validation (a). For each training image, a region-of-interest (ROI) and the
associated manually delineated full-width ground-truth (GT) were augmented by scaling, translation, rotation and reflection to give 32, 256 × 256 image
patches. The patches were fed to the CNN, and the output compared with the augmented GT patches using the Dice Similarity Coefficient (F1 statistic).
The errors are back-propagated through the network to adjust the internal weights, and the process repeated with another training image. Once the
network has been trained on all 480 initial images, termed an epoch, the output is tested against the validation set. Training continues for up to 40 epochs
to give a fully trained network, and then repeated to give an ensemble of six independently trained networks. These are used to predict the vein
architecture in the set of reserved test images. Complete prediction for the complete data set requires seven iterations. (b) The performance of the CNN
approach is compared with a range of different network enhancement and segmentation methods (orange boxes) including local adaptive thresholding
(Midgrey, Niblack, Bernsen and Sauvola), or multiscale ridge enhancement methods (Vesselness, MFATλ, MFATp, Bowler Hat and phase-congruency),
using Precision-Recall (PR) analysis. (c) To extract the vein network, the full-sized images are processed through the ensemble of independently trained
CNN networks to give an average probability map of the vein network (green boxes). The probability map is segmented to give a full-width binary image
(FWB) and then skeletonised in a two-step process to give loops and trees. The width of the veins is estimated from the Euclidean Distance Map (EDM) of
the FWB image. (d) The skeleton is converted to a weighted graph representation with nodes at junctions linked by edges along the veins, which are both
associated with a vector of properties (purple boxes). The areoles are extracted from the complement of the FWB image, whilst the polygonal regions,
including the area of the veins up to the skeleton are extracted from the complement of the skeleton. In addition, a weighted dual graph is constructed that
links adjacent areoles (nodes) with edges weighted by the width of the intervening vein. Edges are removed in sequence to fuse the parent areoles and
reveal the nested loop structure of the network by hierarchical loop decomposition (HLD). Network metrics are calculated at each step of the HLD to track
the vein architecture at different scales.
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https://doi.org/10.5281/zenodo.4007731). This required
replacement of the Keras Upsampling2D layers with MATLAB

transposedConv2dLayer layers using a stride of 2 and uniform
weights equal to 1.

Vein prediction on the full-size images

For vein prediction over the full 10 mm × 10 mm region, images
were processed as overlapping 256 × 256 pixel patches. At each

Augment data:
Resize ± 20%
Rotate –π to π

Translate ± 256 pixels
Reflect

32 × 480 ROI
samples

Full data set – 727 images

Select 480 training
Images at random

× 40 training
epochs

For each image 

For each training epoch

Pixel-wise 
cross-entropy
loss function

32 × 480 GT
samples

CNN network

Apply ensemble of 6 
independently trained

networks

Process 256 × 256 
patches with 50 pixel

stride in (x,y)

Re-sample 32,
256 × 256 patches

Average CNN 
probability map

For each full-size image

(b) Methods comparison

Network enhancement method
Adaptive threshold – Midgrey, Niblack, 

Bernsen, Sauvola.
Phase congruency - FeatureType

Morphological – Vesselness, MFATλ
MFATp, Bowler Hat

(a) CNN Training (c) Network extraction

Precision-Recall
Analysis

Hierarchical
Loop Decomposition

Back propagate
errors

Validate
performance

The remaining 
120 images are 

used for validation 

1 training epoch

Loop skeleton:
Watershed 

Segmentation

Tree skeleton:
Thinning and 
spur selection

Binarisation to give 
full-width vein image

Complete skeleton

Width (EDM)

Weighted graph
Conversion

Vectors of 
node and edge 

properties

Polygonal areas:
Complement of 

skeleton

Areoles:
Complement of 
full-width image

Vector of areole 
properties

Vector of 
polygonal area 

properties

Dual graph

1 fully trained
network

For each ground-truth (GT) region

Apply masks

Add manual major 
vein

(b) Graph analysis

Reserve 120 images for predictionSelect 600 images for training and testing
(exclude 7 images where the 

ground-truth patch was too small)

For each independently
trained network

x 6 networks
ensemble
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iteration, a mini-batch of eight patches was sampled at random
without replacement, with a separation (stride) of 50 pixels in
both x and y to give >25-fold over-sampling, and a small overlap
between patches. The results were assembled back to the original

image size to give a probability map of predicted values, with
each pixel classified at least 25 times within different image con-
texts due to the stride overlap. Prediction of the CNN on a full-
sized image took c. 8 min on the GPU clusters. The analysis code

0 2 4 6
log10 Area (µm2)

0 100 200 300
Width (µm)

(a) Original cleared leaf image (b) CNN probability map (c) Pixel skeleton

(d) Skeleton coded by width (e) Areoles coded by log area (f) Dual graph

(g) Largest intact sub-trees (h) Hierarchical loop decomposition

0 100 200 300
Width (µm) 

N
od

e 
le

ve
l

Terminal node

Fig. 3 Processing steps in convolutional neural network (CNN) training, segmentation and analysis. (a) Original image of a typical cleared leaf sample
following CLAHE enhancement, with inset showing the central region at ×6 zoom. Bar, 5 mm. (b) Average ensemble CNN probability map. (c) Pixel
skeleton with loops in magenta and trees in green. (d) Pseudocolour-coded vein width skeleton superimposed on the original image. (e) Areoles,
pseudocolour-coded by log10 area. (f) Dual graph connecting centroids of adjacent areoles with the edge weight given by the average width of the
intervening vein. (g) Overlay of the dual graph for the five largest intact subtrees in the full-size image. (h) The complete hierarchical loop decomposition
(HLD) of the dual graph including the five largest intact subtrees following the colour scheme in (g).
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running on a single CPU took c. 20 min depending on the com-
plexity of the network and amount of down-sampling. The typi-
cal processing speed was c. 60 000 pixels s−1.

Conversion of the CNN probability map to a weighted
network

For each full-sized leaf image (Fig. 3a), the six CNN probability
maps were averaged to generate a mean probability map (Fig.
3b), down-sampled by a factor of 2 to reduce subsequent compu-
tational costs, and binarised using a threshold based on the aver-
age F β statistic from Precision-Recall analysis (to be described
later). Only the largest connected component was retained. Dam-
aged and background regions that were defined manually for each
image were masked from analysis.

The resultant full-width binary (FWB) image was thinned to a
single-pixel wide skeleton (Supporting Information Fig. S1b).
Simple thinning algorithms gave an irregular zig-zag backbone
around junctions. A better centreline was realised using a hybrid
skeletonisation protocol that combined watershed segmentation
to find all closed loops (Fig. 3c, magenta), with thinning to
extract tree-like branches (Fig. 3c, green). In brief, watershed seg-
mentation was applied to the Euclidean Distance Map (EDM)
from the FWB image to find all closed loops (Fig. 3c, magenta).
Tree-like branches were extracted as the difference between the
complete thinned skeleton (Zhang & Suen, 1984), and the skele-
ton after removal of spurs (Fig. 3c, green). The ‘trunks’ of the
tree-like skeleton were then re-connected to the nearest pixel in
the watershed loop skeleton, determined from the nearest-neigh-
bour transform of the EDM, and the pixel positions written back
into the image using the Bresenham line algorithm (Bresenham,
1965). This hybrid approach had the benefit that loops and tree-
like portions of the skeleton were automatically separated and
could be analysed separately (Fig. 3c).

The pixel skeleton was converted into separate vein segments
using the MATLAB edgelink algorithm (Kovesi, 2000), which pro-
vided a set of pixel-coordinates for each vein in the network. The
vein segments were converted to a graph representation (Fig.
S1c) with nodes (N) assigned to each junction or free end con-
nected by edges (E) (Roth-Nebelsick et al., 2001).

The width at each pixel of the skeleton was calculated from the
EDM. Pixel width estimates were averaged to give an initial
width estimate for each vein. However, this over-estimated the
width for small veins branching from larger veins, as it included
values where the smaller vein overlapped the larger one (Bohn
et al., 2002). Thus, the width for the smallest vein at each junc-
tion was refined by excluding pixels in the overlap region, before
taking the average of the remaining pixels.

To visualise the segmented network, the average centre-width
of each edge was mapped back into the pixel skeleton, colour
coded on a perceptually uniform rainbow scale, and superim-
posed on the original leaf image (Fig. 3d). The areole regions
between the veins (i.e. excluding the veins themselves) and the
area of the polygonal region up to the pixel skeleton were deter-
mined from the complement of the FWB image or the skeleton,
respectively (Fig. 3e).

Single-scale network metrics

Multiple metrics were extracted from the graph representations
for each vein (Fig. S1d; Table S1), node (Fig. S1e; Table S2),
areole, and polygonal area (Fig. S1f; Tables S3,S4, respectively).
In addition, a set of summary statistics describing the distribution
of each metric were also calculated (Table S5), adopting a com-
parable terminology to Larese et al. (2014), with prefixes V -
veins, N - nodes, A - areoles and P - polygonal areas. Vein metrics
were further subdivided into the total vein network (Tot), veins
forming loops (Loop), and veins forming trees (Tree). The sum-
mary statistics were drawn from mean (av), median (md), min
(mn), max (mx), standard deviation (sd), or skewness (sk) of each
metric distribution. In the case of angular metrics, values were
summarised using circular statistics (Berens, 2009). Each sum-
mary statistic was then given a three-letter code.

The revised ‘centre-weighted’ width value (three-letter code,
Wid), along with the corresponding length (Len), excluding vein
overlap and measured as the sum of the Euclidean distance
between edge pixels, surface area (SAr), volume (Vol ), tortuosity
(Tor), and orientation (Ori) were added to the vector of edge
properties, along with the average edge intensity (Int) and average
CNN probability (Prb) (Fig. S1d). A vector of properties was
also calculated for each node that included the node degree (K),
diameter of the parent branch (BD0), and daughter branches
(BD1 and BD2), their orientation (OD0, OD1 and OD2), and
branching angles (A10, A20 and A21). The angular metrics were
calculated for straight-line segments joining the node and the
midpoint of each vein (Fig. S1e).

Areole and polygonal area metrics

Several morphological features were automatically calculated for
each areole (A) and polygonal region (P) (Fig. S1f; Tables S3,
S4, respectively), along with summary statistics labelled with a
three-letter code, including the area (Are), convex area (CnA),
eccentricity (Ecc), equivalent diameter (EqD), perimeter (Per),
major (Maj) and minor (Min) axes, orientation (Ori), solidity
(Sld = Are/CnA), elongation (Elg = Maj/Min), circularity (Cir =
4 × π × Are/Per2) and roughness (Rgh = Per2/Are), maximum
(Dmx) and mean (Dav) distance to the nearest vein.

Dual-graph representation and HLD

A dual graph of the vein skeleton was calculated that joined adja-
cent polygons, with nodes placed at the centroid of the polygons,
and the connecting edges weighted using the width of the inter-
vening vein segment (Fig. 3f). The dual graph was converted to a
nested branching tree using HLD (Katifori & Magnasco, 2012)
by progressively removing the thinnest edges in sequence and fus-
ing the adjacent polygons until only a single polygon remained
(Fig. 3g,h). This process determined how vein loops are nested
within larger vein loops across spatial scales. A subset of vein and
polygonal area metrics was calculated at each step, allowing the
analysis of network metrics across the scale of the fusion events
(Table S6). Analysis was restricted to fully bounded regions (Fig.
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3g) to ensure that metrics were not influenced by incomplete
veins or areoles truncated at the boundary, although this also
restricted the number of scales available in each sample.

Precision-recall analysis

The performance of the CNN classification and selection of the
optimum threshold were determined by Precision-Recall (P-R)
analysis. The number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) was calculated against
the manually defined GT image. For comparisons of skeleton
extraction, a tolerance of three pixels (c. 10 µm for the down-
sampled images) was allowed (Lopez-Molina et al., 2013). P-R
analysis was used in preference to Receiver Operating Character-
istic (ROC) plots, as the former is better suited to imbalanced
data sets, where TN from the background is expected to be much
greater than Tp from the skeleton (Saito & Rehmsmeier, 2015).
Precision (P) was calculated as ¼ T p

T pþF p
, recall (R) as R ¼ T p

T pþF n

and overall performance assessed with the Dice similarity metric
(F1) score as the harmonic mean of precision and recall,

F 1 ¼ 2� P�R
PþR or the more generalised Fβ score, where

F β ¼ 1þβ2
� � � P�R

β2�PþR
, in this case using β¼ 2, which weights

recall higher than precision. The threshold that gave the highest
F1 or Fβ2 score was used to segment the image.

Comparison with other vein segmentation methods

To compare the performance to other methods, the GT-ROI was
analysed using a range of standard local adaptive thresholding
methods including Midgrey, Niblack (Niblack, 1985), Sauvola
(Sauvola & Pietikäinen, 2000) and Bernsen (Bernsen, 1986)
algorithms, effectively extending the local adaptive threshold
approach used in LeafGUI (Price et al., 2011; Green et al., 2014).
Each method was applied to an inverted version of the original
image, with a disc-shaped local neighbourhood with a radius of
45 pixels, slightly greater than the largest vein in the down-sam-
pled GT images. The offset constant was varied from −0.5 to 0.5
(for Midgrey and Niblack) or 0 to 1 for the other algorithms, in
0.05 increments, and the optimum threshold value selected using
the F1 or Fβ2 metric from the P-R analysis.

To emulate the multiscale Hessian-based Vesselness approach
used in phenoVein (Bühler et al., 2015), the MATLAB fibremetric
implementation of the Frangi ‘Vesselness’ filter (Frangi et al.,
1998) was used with vein thickness between 4 and 9 pixels,
applied over four scales using a Gaussian image pyramid (Burt &
Adelson, 1983) to cover the largest veins. We also tested
improved Hessian-based enhancement techniques using Mul-
tiscale Fractional Anisotropy Tensors (MFAT), in both their
eigenvalue-based (MFATλ) and probability-based (MFATp) form
(Alhasson et al., 2019), and the intensity-independent, multiscale
phase-congruency enhancement developed by Kovesi (Kovesi,
1999, 2000), which was previously used to segment fungal
(Obara et al., 2012), slime mould (Fricker et al., 2017) and ER
networks (Pain et al., 2019). We used the normalised local
weighted mean phase angle (‘Feature Type’) to give intensity-

independent enhancement of vein structures, initially calculated
over 3–5 scales and six orientations, and then applied to an image
pyramid to cover larger scales. In both the vesselness and phase-
congruency enhancement, noise was suppressed by setting all
variation <0.1–0.2 in an extended minimum transformation to
zero. As an alternative morphology-based approach, we also
tested the multiscale Bowler Hat algorithm (Sazak et al., 2019),
which was designed to be more robust at junctions and less sensi-
tive to interference from blob-like inclusions. In all cases, the
resultant multiscale representation was collapsed to a single image
using a maximum projection and segmented over varying thresh-
olds from 0 to 1 in 0.05 increments to find the optimum perfor-
mance as judged by the maximum F1 or Fβ2 statistic in Precision-
Recall comparison with GT. A full set of processing parameters
for these methods is given in Table S7.

As the vein enhancement approaches may be better suited to
extraction of the pixel skeleton, rather than a binary image cover-
ing the full width of the vein, the P-R analysis was also run fol-
lowing conversion of the binary image at each threshold value to
a single-pixel wide skeleton.

Data and algorithm availability

A MATLAB App or the standalone LEAFVEINCNN GUI software
package, including the trained networks, and manual (Fig. S2)
are openly available from https://doi.org/10.5281/zenodo.
4007731. The original image dataset is openly available (Blonder
et al., 2019). The down-sampled CNN predictions, ground
truths, and the MATLAB scripts used for the Precision-Recall (PR)
analysis and calculation of network metrics are openly available
from https://doi.org/10.5281/zenodo.4008614. All results are
openly available from https://doi.org/10.5281/zenodo.4008361.

Results

CNNs provided high accuracy vein network segmentation

To illustrate the accuracy of the ensemble CNN approach, we
show weighted networks for six species (Artocarpus odoratissimus,
Dryobalanops lanceolata, Lophopetalum javanicum, Macaranga
pearsonii, Pentace laxiflora, and Terminalia citrina) covering a
range of different vein architectures from dense loops to open
trees (Fig. 4). In each case the centreline of each vein was cor-
rectly identified, the topology of the complete network was seg-
mented accurately and the width corresponded to the vein
thickness.

To quantify ensemble CNN performance, we examined a
masked ROI from each full-sized image (Fig. 5a) containing the
manually delineated GT (Fig. 5a0). The ensemble CNN applied
to this ROI provided a smooth, high-contrast probability map of
vein identity (Fig. 5b) that was thresholded to give a FWB image
(Fig. 5b0) and compared with the GT using P-R analysis (Fig.
5l). The value used to threshold the CNN probability map was
varied systematically to generate a P-R curve, and the optimum
value determined from the maximum F1 or Fβ2 metrics (see Fig.
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5l, circled and asterisk points, respectively). The P-R image con-
structed using the Fβ2 threshold value (Fig 5b0) showed that the
majority of the segmentation matched the GT (green), whilst the

very tips of the FEVs were slightly clipped (shown as FN in red),
and the vein widths slightly over-estimated with some FP (shown
in blue).

(a) Artocarpus odoratissimus (b) Dryobalanops lanceolata

(c) Lophopetalum javanicum (d) Macaranga pearsonii

(e) Pentace laxiflora (f) Terminalia citrina

Width (µm)

Width (µm)

Width (µm)

Width (µm)

Width (µm)

Width (µm)

Fig. 4 Typical convolutional neural network (CNN) segmentation results. Six examples of leaf venation networks (grey scale images) overlaid with the
extracted network skeleton pseudocolour-coded to represent vein thickness on a rainbow scale (blue, thin; red, thick). Inset panels show a three-fold zoom
of centre-located region-of-interest (ROI). Bars, 10 mm.
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(a)

(l) (m)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(a') (b') (c') (d') (e') (f')

(g') (h') (i') (j') (k')

(a'') (b'') (c'') (d'') (e'') (f'')

(g'') (h'') (i'') (j'') (k'')

Fig. 5 Comparison of different network enhancement and segmentation methods. A small region-of-interest (ROI) from the full-size image (a), was
processed using different enhancement algorithms including the trained convolutional neural network (CNN) (b); local adaptive thresholding using
Midgrey (c), Niblack (d), Bernsen (e) or Sauvola (f) algorithms; Hessian-based vessel enhancement using Vesselness (g), MFATλ (h) and MFATp (i); Phase-
congruency Feature Type (j), and Bowler Hat morphological filtering (k). The performance of each method was evaluated against a manually defined FWB-
GT image (a’) or the resultant single-pixel skeleton (a0 0). In each case, true positives (TP) are coded in green, false negatives (FN) in red, and false positives
(FP) in blue for the FWB image (b0–k0), and the single-pixel skeleton (b0 0–k0 0). Precision-Recall (P-R) plots illustrate the performance of each method as the
threshold is varied for the full-width comparison (l) and following skeletonisation (m). For each algorithm the optimum threshold was selected using the
maximum value of the Dice Similarity Coefficient (F1, asterisk), or Fβ2 statistic (open circle) from the P-R plots. Values are shown above the corresponding
image for the Fβ2 statistic, and the optimal threshold value T. The CNN gave the best performance for both the FWB image (Fβ2 = 0.943) and the skeleton
(Fβ2 = 0.99) comparison. In addition, the P-R plots showed the CNN method performed well over a wide range of segmentation thresholds, whilst the
other algorithms were extremely sensitive to the precise threshold used.
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Ensemble CNN performance was affected by the contrast
range present in the image initially (Fig. S3), but this could be
completely recovered using CLAHE to enhance contrast (Fig.
S4). Furthermore, performance was stable within a wide range of
CLAHE settings (Fig. S5), suggesting that most critical feature is
to cover the full contrast range, rather than the fine tuning the
local adaptive features. Increasing levels of blur degraded CNN
performance (Fig. S6), but only at levels that would give unac-
ceptable out-of-focus in the original image. Possibly the strongest
effect on CNN performance was the pixel resolution of the origi-
nal image, where fine veins were progressively lost as the resolu-
tion decreased (Fig. S7). Nevertheless, performance was almost
completely recovered by simple image interpolation back to the
standard pixel size (Fig. S8).

CNNs performed better than other network extraction
algorithms

P-R curves for the other enhancement methods were worse that
the CNN result (Fig. 5l). All the local adaptive thresholding
approaches tested (Midgrey, Niblack, Bernsen and Sauvola,
Fig. 5c–f, respectively) captured much of the main vein struc-
tures, but missed or fragmented fine veins (Fig. 5c0–f0, red), and
included some noise or nonvein structures (Fig. 5c0–f0, blue).
The Hessian-based techniques (‘Vesselness’, MFATλ and
MFATp; Fig. 5g–i, respectively) showed slightly greater selectiv-
ity for the veins over background compared to adaptive thresh-
olding methods, but had errors in the width estimate
(Fig. 5g0–i0). The ‘Vesselness’ retained more of the intensity
information from the original image and tended to give low
intensities at junctions (Fig. 5g,g0), whilst MFATλ and MFATp

gave higher contrast and better resolution of junctions (Fig. 5h,i,
h0,i0). The phase-congruency Feature Type enhancement gave
high contrast and even intensity for all veins, irrespective of their
size, and captured the topology quite well (Fig. 5j), but gave
numerous small errors along the boundary of the binarised veins,
and included discrete round structures that we infer to be glands
(Fig. 5j0). The Bowler Hat enhancement (Fig. 5k) improved the
selection of veins over nonveins, but was still dominated by the
original intensity information, making subsequent threshold
selection difficult (Fig. 5k0).

As several of these enhancement methods were originally
designed to facilitate extraction of the skeleton, rather than FWB
image, we also compared their performance against the GT skele-
ton (Fig. 5a00–k00). The performance of the CNN was even better
in this comparison (F1 = 0.98, Fβ2 = 0.99), and was robust to
threshold selection (Fig. 5m), with the optimal threshold across
all species of 0.534 � 0.202 SD for F1, 0.378 � 0.197 SD for
Fβ2. The other methods lagged behind the CNN result, but typi-
cally showed better P-R performance for the skeleton compared
with the full width. However, they also showed much greater sen-
sitivity to threshold selection, with very rapid fall-off in perfor-
mance moving away from the optimal threshold (Fig. 5m).
Without a GT for each image, such automatic optimisation of
the threshold value for any of the algorithms would not be possi-
ble, so methods that are highly sensitive to the threshold value are
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Fig. 6 Relative convolutional neural network (CNN) performance for
pixel-based PR metrics. (a) The Fβ2 statistic from P-R analysis against FWB-
GT tracings was measured using different enhancement algorithms for all
727 specimens using the optimised threshold selection for each method to
ensure the best possible performance. (b) The ensemble CNN Fβ2 was also
compared across plant families with different network architectures.
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likely to perform much worse when used for typical datasets that
lack GTs.

When the above procedure was applied to all leaves in the
dataset, the Fβ2 statistic values for the CNN were higher than for
all other algorithms: 0.945 vs 0.837, t = −36.463, df = 1062.7,
P < 10−16 (Fig. 6a). Thus, CNN enhancement gave accurate
and robust segmentation of these leaf vein networks and out-per-
formed the currently available network enhancement and

segmentation methods tested. Performance was also consistent
across plant families, and by inference, across diverse network
architectures (Fig. 6b).

As the best PR performance based on pixel classification may
not equate to the optimal network extraction, we also examined
the impact of varying thresholds on a set of basic network metrics
including Area eccentricity (Fig. 7a), Area mean (Fig. 7b), FEV
ratio (Fig. 7c), No. junctions (Fig. 7d), Length density (Fig. 7e),

Junctions LengthDensity NodeDensity

AreaEccentricity AreaMean FreeEndRatio

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

CNN

Midgrey

Niblack

Bernsen

Sauvola

Vesselness

MFATl

MFATp

FeatureType

BowlerHat

CNN

Midgrey

Niblack

Bernsen

Sauvola

Vesselness

MFATl

MFATp

FeatureType

BowlerHat

Fractional error, loge[(O−E)/E]

M
et

ho
d

Fig. 7 Relative convolutional neural network (CNN) performance for network metrics. The performance of each network enhancement and segmentation
method was compared for a set of network metrics, and presented as the log fractional error (loge(O–E/E, where O is the observed value and E is the
expected value) from the GT skeleton.
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and Node density (Fig. 7f). For all metrics, the CNN approach
showed the lowest fractional error from the GT skeleton, fol-
lowed by the BowlerHat, Phase-congruency and Hessian-based
techniques. The adaptive threshold methods performed very
poorly, with fractional errors 1–2 loge units adrift.

Venation comparisons using single-scale metrics

A range of metrics was calculated following CNN network
extraction from the full-size images for the veins, areoles and
polygonal regions (Tables S2–S5). Each metric had distribution
characteristic of the species. For example, the relationship
between vein width and length (Fig. 8a) or between loop circu-
larity and elongation (Fig. 8b), showed markedly different pat-
terns between the six species illustrated. For example, in some
species (A. odoratissimus and D. lanceolata), the vein width
showed little separation into distinct vein orders, whilst for the
others, discrete vein classes were readily identifiable (Fig. 8a), but
with markedly different numbers in each class.

Venation comparisons using HLD and multiscale metrics

Given the limitations of single-scale metrics, we explored analysis
using HLD to progressively group regions of the leaf into clusters

at different scales to generate multiscale statistics for each metric
(Fig. 3g,h). For example, the spatial scaling of vein density
(VTotLD) changed as a function of the fusion vein width (Wid)
(Fig. 9a). At small scale, some species had a much higher vein
density (e.g. P. laxiflora). However, this reduced rapidly once a
specific size class of veins was removed (50 µm in this case; Fig.
8a). In some other species (e.g. T. citrina), as the scale increased
(or equivalently as the size class of the intervening vein increased),
the vein density was maintained to a much greater extent.

The different vein sizes and overall vein density reflected differ-
ent partitioning of the leaf lamina (Fig. 9b). Thus, the median
loop area was an order of magnitude larger for L. javanicum,
M. pearsonii and T. citrina, relative to other species at small scale,
indicating a lower areole density in these species. By contrast, at
intermediate scales, other species like D. lanceolata or P. laxiflora
transitioned rapidly to low levels of looping from a dense initial
value, whilst A. odoratissimus maintained a more consistent
response across scales, reflecting the relative investment in loops
and redundant flow pathways at different spatial scales.

The level of redundancy was also reflected in the amount of
network branching across spatial scales measured by the mini-
mum spanning tree (MST) ratio (Fig. 9c). The MST ratio
increased with vein size class fastest for D. lanceolata and
P. laxiflora, and slowest for L. javanicum. In all cases there were

Artocarpus odoratissimus Dryobalanops lanceolata Lophopetalum javanicum Macaranga pearsonii Pentace laxiflora Terminalia citrina
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Fig. 8 Example single-scale metrics for leaf venation networks. (a) Bivariate relationship between vein width and vein length for the six species shown in
Fig. 4. Arrows indicate the occurrence of discrete minor vein size classes in some species. (b) Bivariate relationship between areole circularity and areole
elongation. Points represent each unique vein segment (a) or areole (b).
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Fig. 9 Example multiscale metrics for leaf venation networks. (a) Changes in vein density with increasing vein width for the six species shown in Fig. 4
following successive vein removal during hierarchical loop decomposition (HLD). (b) Changes in median areole area with increasing vein width removal. (c)
Changes in minimum spanning tree ratio with increasing vein width removal. (d) Changes in median areole circularity with increasing areole area following
fusion.
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shifts in gradient corresponding to scale transitions between
veins. T. citrina and M. pearsonii also showed nonmonotonic
changes in the MST ratio, consistent with early pruning of FEV
and tree-like branches to give a minimum at an intermediate spa-
tial scale. Thus, this multiscale statistic indicates how investment
in veins of different sizes yields different branching organisation.

The space-filling geometry of the network also changed across
spatial scales (Fig. 9d). Thus, the median areole circularity
decreased with vein size class in all species, but at different rates.
Areole circularity was similar between species at small spatial
scales, but at larger spatial scales. D. lanceolata had the least circu-
lar areoles due to fusing regions becoming more elongated with a
more parallel vein architecture, whilst A. odoratissimus main-
tained the most circular areoles.

Discussion

CNNs improve network segmentation accuracy and
robustness

Ensemble CNNs provide an alternative approach for leaf vein
network segmentation with high accuracy, as judged both by P-R
analysis against GT tracings using pixel classification and a set of
network measures. Ensemble CNNs also provided consistently
better segmentation of leaf vein networks from field-collected
leaves across many different species and leaf vein architectures
than other currently available network extraction algorithms. In
addition, the CNN probability map produced smooth, full-
width segmentation of veins, even in the presence of image arte-
facts such as differential clearing, air bubbles or trichomes. This
in turn led to improved robustness, precision and accuracy in
graph extraction, vein width estimation and subsequent quantita-
tive metrics.

We noted that this deep learning approach contrasted with
previous neural network approaches for leaf architecture (Grin-
blat et al., 2016), which used simpler network architectures and
more limited training data, with a goal to develop a classification
system rather than extract the venation network itself.

Ensemble CNNs allowed rapid characterisation of minor vein
networks at multiple spatial scales with minimal manual inter-
vention, removing a major bottleneck of manual tracing. For
comparison, hand-tracing the equivalent area predicted by the
CNNs would have required >36 000 person-hours to complete.
Nevertheless, the results presented here are truncated by the leaf
sample extents, which prevented exploration of larger scales than
c. 10 × 10 mm2 areas.

The trained ensemble CNNs used input images with high
pixel resolution (1.68 µm per pixel) and contrast adjusted to
cover the full dynamic range following CLAHE, and could be
used without modification to analyse other leaf images of compa-
rable contrast and resolution. Other leaf vein images at lower spa-
tial resolution could still be segmented well using up-sampling
with interpolation, to ensure that the smallest veins are c. 5 pixels
wide. A typical example is shown in Fig. S9 for a leaf originally
collected at 6.7 µm per pixel using the LeafVeinCNN GUI (Fig.
S2). Nevertheless, the performance of the ensemble CNNs was

driven by the quality of the GT and the input images. For exam-
ple, the LeafVeinCNN may currently have limited performance
on lower-resolution images that are typical for digitised historic
cleared leaf collections, such as the Smithsonian/Wolfe collection
(Lobet et al., 2013; Das et al., 2014), without additional training,
or using approaches such as generative adversarial networks
(GANs) to refine segmentations and avoid unlikely predictions
that have large blotches or disconnected areas.

We are expanding the underlying CNN models through
refinements in network architecture and training with additional
GT data, including for whole leaves. Readers should visit
https://doi.org/10.5281/zenodo.4007731 to obtain updated
trained CNNs to use with the program as these become available.

Network analysis across multiple scales

Most studies have primarily focused on descriptors of the net-
work at single scales, for example the density of major and minor
veins (Sack et al., 2012), or metrics for the shape of areoles (Blon-
der et al., 2011; Price & Weitz, 2014). At multiple scales, other
studies have suggested that the hierarchical nesting of veins and
areoles may distinguish species or have functional significance
(Katifori et al., 2010; Katifori & Magnasco, 2012; Ronellenfitsch
et al., 2015; Brodribb et al., 2016; Fiorin et al., 2016). Existing
systematic manuals recognise a broad diversity of leaf venation
forms and associated terminology that are not well captured by
extant quantitative metrics (Ellis et al., 2009). Additionally, prior
efforts to leverage HLD yielded a set of statistics, such as Strahler
number, derived originally from analysis of river basins, which
are quite difficult to interpret in terms of biological processes
(Pelletier & Turcotte, 2000; Price et al., 2011; Ronellenfitsch
et al., 2015; Lasser & Katifori, 2017). Here, we also used HLD
to determine scaling relationships, but retained a set of more con-
ventional metrics to compare network architecture across scales.

The multiscale statistics based on HLD are likely to provide
additional insights into how network architecture influences
transport, support, defence, embolism resistance, and resilience
to herbivory (Sack et al., 2008; Katifori et al., 2010; Brodribb
et al., 2016; Blonder et al., 2018). Many of the metrics we
explored here are empirically coordinated with different leaf
functions. Using venation networks extracted from this dataset
(Blonder et al., 2020), we recently showed that the MST ratio,
and circularity ratio are linked to mechanical strength, whilst the
elongation ratio and circularity ratio are linked to secondary
defences. Further analyses of multiscale statistics may enable a
more quantitative and richer description of network architecture
that supplements the utility of qualitative classifications.
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