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INTRODUCTION

Many ecological management problems involve observ-
ing a community in an initial state, then taking a sequence 
of actions to yield a desired state (e.g., promoting gut 
microbiome health after infection, restoring a degraded 
rangeland). Management problems are often solved by 
brute- force navigation, which involves removing all indi-
viduals of undesired species and adding many individuals 
of desired species at great effort (e.g., antibiotics+probiotics, 
bulldozing+replanting). Such navigation may succeed, but 
at high cost and impact. Alternatives may exist that are 
more efficient and have fewer side effects. The challenge is 
to identify action sequences, that is, navigation, that yield 
the desired state at lower cost and effort.

Some prior navigation approaches focused on contin-
uous control of community dynamics. The problem has 

recently been conceptually explored in models (Angulo 
et al., 2019; Baranwal et al., 2022; Brias & Munch, 2021; 
Jones et al., 2020). Applications exist for example, fish-
eries, forestry, agriculture, and other natural resource 
management challenges where continual intervention is 
of interest (Boettiger et al., 2015; Krausman et al., 2013; 
Lapeyrolerie et al., 2022; Palmer et al., 2016), and also in 
microbial systems where metabolite production or infec-
tious disease are priorities (Angulo et al., 2019; Costello 
et al., 2012; García- Jiménez et al., 2018). However, con-
tinuous control of multiple species' abundances becomes 
mathematically prohibitive and biologically unrealistic 
in high- richness communities.

We instead propose a discretised navigation approach 
that focuses on control of community outcomes via ma-
nipulation of species coexistence Many management 
problems can be simplified to outcomes (Blonder & 
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Abstract
Ecological management problems often involve navigating from an initial to 
a desired community state. We ask whether navigation without brute- force 
additions and deletions of species is possible via: adding/deleting a small number 
of individuals of a species, changing the environment, and waiting. Navigation can 
yield direct paths (single sequence of actions) or shortcut paths (multiple sequences 
of actions with lower cost than a direct path). We ask (1) when is non- brute- force 
navigation possible?; (2) do shortcuts exist and what are their properties?; and 
(3) what heuristics predict shortcut existence? Using a state diagram framework 
applied to several empirical datasets, we show that (1) non- brute- force navigation 
is only possible between some state pairs, (2) shortcuts exist between many state 
pairs; and (3) changes in abundance and richness are the strongest predictors of 
shortcut existence, independent of dataset and algorithm choices. State diagrams 
thus unveil hidden strategies for manipulating species coexistence and efficiently 
navigating between states.
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2 |   NAVIGATION BETWEEN COMMUNITY STATES

Godoy,  2022; Clark et al.,  2021; Maynard et al.,  2020). 
Reaching an outcome (desired state) may be more im-
portant than the transient dynamics. Treating navigation 
as a discrete problem can reduce mathematical complex-
ity and improve biological realism.

Our hypothesis is that the internal dynamics of a com-
munity enable taking actions that nudge a community be-
tween states, either through direct paths or shortcut paths, 
both of which are lower effort than brute- force navigation. 
Here, we define a direct path as a single set of low- effort 
actions that yield the desired state, and a shortcut path as 
a sequence of multiple sets of low- effort actions that yield 
the desired state; action sets are separated by waiting for 
the community to reach a feasible and stable fixed point. 
The term ‘shortcut’ is used to indicate that path cost is 
small, not path length (Figure 1a). Conceptually, we nudge 
a community until it tips into an alternate basin of attrac-
tion, then repeat this nudging process until the desired 
state is reached. Several small nudges may be lower in cost 
than a single large push into the desired state.

Brute- force navigation is always theoretically pos-
sible between states by removing all individuals of un-
desired species and then adding a sufficient number of 
desired species, ignoring the internal dynamics of the 

community. However, brute- force is often impractical, 
and if the desired state is not feasible and stable, further 
continuous effort would be needed to maintain the state. 
We focus therefore on finding direct and shortcut paths 
between feasible and stable states only. Direct paths may 
be findable via trial- and- error. However, shortcuts are 
difficult to find because of the near- infinite numbers of 
potential action sequences to explore.

The navigation problem is loosely analogous to the 
game of ‘Snakes and Ladders’ (known originally as ‘gyān 
caupaṛ’) (Figure 1b) (Topsfield, 2006). In this game, ‘the 
player should complete [the tour of] the board according 
to its numbering, starting at birth and ending at libera-
tion. Going upward comes about by means of the ladder; 
going down comes about from the body of the snake. Going 
up is achieved from good actions; [going down from] the 
face of the snake is caused by bad actions. Vaikuṇṭha 
[the heaven of Viṣṇu] is reached by completing the game; 
otherwise the player must go on climbing’ (Sharma 
Jyotishacharya,  1871). While Snakes and Ladders is a 
game of chance, not choice, our hypothesis is approxi-
mately equivalent to finding and then using ‘snakes’ 
(richness- decreasing shortcuts) and ‘ladders’ (richness- 
increasing shortcuts) to navigate between states.

F I G U R E  1  (a) Navigation is the problem of discovering sequences of actions that shift a community from an initial state (purple circle) 
to a desired state (green circle) while not unnecessarily visiting other states (grey circles). A direct path (black arrow) involves taking a single 
low- cost action. A shortcut path (grey arrows connecting orange circles) involves taking several low- cost actions, and represents a ‘work- with- 
nature’ solution. A brute- force solution (red arrows) involves deleting all individuals of all undesired species and adding many individuals of all 
desired species. (b) Navigation is loosely analogous to playing ‘Snakes and Ladders’. In this game, players transition between squares (states) 
through sequential movement (actions) that either progress along the board (direct paths) or jump around via snakes or ladders (shortcut paths). 
This game board is from India, Ajmer district, circa 1815. Ashmolean Museum collection EA2007.2, reproduced under licence #21236.
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First, we show how to enumerate a state diagram 
characterising all of the possible coexistence outcomes 
and transitions between fixed point states. We consider 
actions that include adding � individuals of a certain spe-
cies, deleting � individuals of a certain species, changing 
the environment, or waiting. The first three actions are 
assumed to occur instantaneously, shifting the commu-
nity into a transient state, while the last action takes 
time, shifting the community to a fixed point. Each type 
of action i is also assumed to have a different cost Ci. We 
then show how to identify shortcuts on the state diagram 
for arbitrary pairs of initial and desired states.

We apply the approach to communities representing 
six empirical parameterisations of the generalised Lotka- 
Volterra model, varying in taxonomy and species pool 
richness. We use these data to ask: (1) when is navigation 
between states possible without using brute- force; (2) are 
shortcut paths common, and what are their characteris-
tics; and (3) are shortcuts predictable based on dataset or 
initial/desired community properties?

M ATERI A LS A N D M ETHODS

The state diagram approach

There is a set of n species comprising a regional pool, 
of which any subset may co- occur locally in the com-
munity. The state of the community, X =

{
Xi(t)

}
∈ℜn

≥0
, 

is defined as the vector of abundances of each species Xi 
(1 ≤ i ≤ n) at a time t. There is a set of discrete environments 
with cardinality m defined by 

{
Ej
}
∈M with 1 ≤ j ≤ m. 

Note that the environment may actually be continuous; 
here, we simply consider some discrete points within 
the environment to be reachable by actions, for exam-
ple, to model cases where an experimentalist could se-
lect among ‘cold’, ‘warm’, and ‘hot’ conditions (yielding 
m = 3). There is a dynamical model that predicts tempo-
ral changes in the state as a function of variables, which 
may include X and E, dX(t)

dt
= f (X (t),E).

Based on this dynamical model, there is a set of fixed 
points with cardinality Ξ, 

{
�k
}
 with 1 ≤ k ≤ Ξ, defining 

the points where dX(t)
dt

= 0. Note that if E changes, so too 
may Ξ. A fixed point k can have an attribute fs

(
�k
)
indi-

cating that it is feasible (i.e., all species present, i occur at 
non- negative abundances; �k,i ≥ 0) and stable (for every 
small 𝜀 > 0 there exists a 𝛿 > 0 such that if ||

|
X
(
t0
)
− 𝜉k

||
|
< 𝛿 

then ||X (t) − 𝜉k
|| < 𝜀 for all t ≥ t0).

We next enumerate 
{
�k
}
 over all combinations of spe-

cies being present or absent in the community (i.e., the 
empty community, all species occurring alone, all pairs, 
all triplets, etc.). These fixed points can be identified by 
exploring every subspace of the state space (all combina-
tions of presences/absences), then re- calculating dynam-
ical model nullclines.

We consider four types of actions, indexed 1 ≤ q ≤ 4. 
Each action type q is assumed to have some cost Cq ≥ 0 

and have a different consequence: (q  =  1) adding a 
small number (�) of individuals of a single species i (i.e., 
Xi → Xi + �); (q  =  2) deleting a small number (�) of in-
dividuals of a single species i (i.e., Xi → max

(
Xi − �, 0

)
 ); 

(q  =  3) changing the state of the environment j to j*, 
1 ≤ j∗ ≤ m (Ej → Ej∗, no change to X), and (q = 4) wait-
ing for a shift into fixed point k*, 1 ≤ k∗ ≤ Ξ (X → �k∗, 
no change to E). Each species i can either be added or 
deleted up to one time until a waiting action has been 
performed. For all actions except waiting, the conse-
quence is assumed to occur instantaneously; for waiting, 
the consequence is assumed to occur as t→ ∞ and deter-
mined by the dynamical model. That is, we assume that 
states do not reach a fixed point until a waiting action, 
and that multiple non- waiting actions can be taken in se-
quence before waiting.

The system can now be discretised into a smaller 
state space {Y} that describes fixed points and transient 
points. In each environment E, we therefore assume that 
each state can either be at one of the fixed points �k or, 
for each fixed point, at one of the 3n possible transient 
�- addition or �- deletion states that occur immediately 
after any number of actions is taken. The overall car-
dinality of the discretised state space {Y} is therefore 
m × Ξ × 3n or approximately m × 2n × 3n assuming one 
fixed point per species combination. The action space 
can also be discretised. There are a total of n �- additions 
and �- deletions, m environmental changes, and 1 wait 
action, yielding a cardinality of 2n +m + 1. Each action, 
now by definition, yields a transition from a state in {Y} 
to another state in {Y}.

With this information for fixed points and the out-
comes of actions at each fixed point, we can construct 
a directed graph called the state diagram. Vertices are 
states in {Y} and edges are actions, where the arrow 
tip is the state after the action and the arrow base is 
the state before the action. Each vertex k has attribute 
s
(
�k
)
; each edge � has an attribute Cq. We define an 

action sequence Δ =
{
�1, �2, …

}
 as an ordered set of 

edges (actions) that connects an initial vertex (state) to 
a desired vertex (state), with associated cost sequence 
� =

{
Cq,1,Cq,2, …

}
.

Our primary insight is that the navigation problem is 
now equivalent to a shortest path (lowest cost) problem 
on a directed graph (the state diagram), that is, finding a 
Δ that minimises 

∑
�. This general mathematical prob-

lem can be solved efficiently (Cherkassky et al.,  1996; 
Ford Jr, 1956). If a path does not exist, the only solution 
is brute- force; if a path does exist, and has one wait ac-
tion, it is direct, and if it has more than one wait action, 
it is a shortcut.

Implementation

We implemented the state diagram approach for the 
GLV model, which has been widely studied to explore 
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4 |   NAVIGATION BETWEEN COMMUNITY STATES

questions of species coexistence (Barabás et al.,  2016; 
Saavedra et al., 2017) and can accommodate cases where 
the environment influences parameter values (Van Dyke 
et al., 2022). The dynamical model is

where E is assumed constant unless changed by an ac-
tion. Here, r(E) is a n × 1 vector that indicates the in-
trinsic growth rates of each species, and A(E) is a n × n 
matrix whose i,j entry represents the change in species i's 
per- capita growth rate for a unit change in the density of 
species j.

If A is non- singular, for each parameter combination, 
there is one non- trivial fixed point, determinable by null-
cline analysis:

If the fixed point is not feasible, the state will shift to a 
subspace with some species absent (see below). If A is sin-
gular, there can be many fixed points corresponding to the 
null space of A, corresponding to cases where parameters 
are either linear combinations or there is partitioning in 
the interaction network (Angulo et al.,  2019). Stability is 
defined by the criterion

where
{
�i(E)

}
 are the n eigenvalues of A(E), and feasibility 

is determined based on the values of �.
To then calculate all the fixed points Ξ, the process 

can be iterated for all combinations of species. Because 
all GLV interactions are pairwise, cases where species j 
is absent can be handled by dropping row j and column 
j of the A matrix (i.e., obtaining the principal subma-
trix), and simultaneously dropping entry j of the r vector. 
Multiple entries can be dropped in cases where multiple 
species are absent. This is non- trivial, as the eigenval-
ues of a principal submatrix (which are closely related 
to the matrix inverse, and thus the location of the fixed 
point) are not necessarily the same as for the original ma-
trix (Johnson & Robinson, 1981). That is, combinations 

of species may behave differently from subsets of those 
combinations (Saavedra et al., 2017), a phenomenon also 
seen in models with higher order interactions (Mayfield 
& Stouffer, 2017). If A and all its principal submatrices 
are non- singular, then there is a single fixed point per 
iteration, yielding Ξ = 2n fixed points for each value of E. 
If A is singular, there may be more or fewer fixed points 
to be considered.

The outcomes of actions are determined based on 
numerical integration of the dynamical model. First, 
we enumerate all desired addition, deletion, and envi-
ronment change actions for each fixed point, arriving at 
intermediate states. Then, when the waiting action is per-
formed, the initial condition of the numerical integration 
is set to the intermediate state, and the dynamics are run 
forward with integration time span proportional to the 
smallest eigenvalue of A to ensure that the system can 
approach equilibrium. The resulting final abundances 
are then matched to the corresponding fixed point if the 
integration is successful and results in a non- trivial fixed 
point.

We calculate Δ and 
∑

� for pairs of starting and de-
sired states using A* search, which is a best- first search 
algorithm that expands local paths around the source 
vertex according to a combination of the cost of the 
path from the initial vertex to the current vertex plus 
the cost of a heuristic estimate of the cost from the 
current vertex to the desired vertex. It is guaranteed 
to find a solution if one exists (Hart et al., 1968). We 
use an admissible heuristic that optimistically assumes 
that a single round of adding small numbers of individ-
uals of currently missing species followed by a waiting 
action is sufficient to reach the desired basin of attrac-
tion. All algorithms were implemented in Julia (version 
1.6.0). ODEs were solved using Rodas4P with absolute 
tolerance 10−6, relative tolerance 10−6, and maximum 
iterations 103.

Empirical parameterisation

We studied six cases where parameter estimates for 
A and r come from fitting generalised Lotka- Volterra 
models to empirical data (Table  1, taxon names in 

dX(t)

dt
= diag(X (t))(r(E) +A(E)X (t))

� = −A−1(E) r(E)

maxi
[
Re

({
𝜆i(E)

})]
< 0

TA B L E  1  Summary of properties for empirical datasets used in this study. Abundance values are summarised across all assemblages and 
then across all experimental conditions. The number of edges in the state diagram are summarised across all � values.

Dataset
Number of 
species (n)

Number of 
environments (m)

Number of edges in state 
diagram (mean ± s.d.)

Proportion of states 
feasible and stable

Abundance (grand 
mean, grand s.d.)

Ciliate 5 1 27 ± 2 0.25 2.75 ± 1.48

Ciliate + environment3 5 3 2851 ± 1562 0.90 0.07 ± 0.02

Ciliate + environment5 5 5 5667 ± 2820 0.74 0.61 ± 1.26

Human gut 12 1 7132 ± 219 0.05 2.08 ± 8.35

Mouse gut 11 1 22,065 ± 1590 0.24 6.10 ± 46.83

Protist 11 1 408 ± 39 0.02 8.29 ± 65.82
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   | 5BLONDER et al.

Table  S1). These comprise: (‘Ciliate’) a n  =  5 proto-
zoan ciliate community (Maynard et al.,  2020) based 
on data for 19°C growth; (‘Ciliate+environment3’) the 
above n  =  5 community for m  =  3 environments: 15, 
19, and 23°C growth from (Pennekamp et al.,  2018), 
(‘Ciliate+environment5’) as above for m  =  5 environ-
ments also including 17 and 21°C growth; (‘Human 
gut’) a n  =  12 m  =  1 synthetic human gut microbial 
community (Venturelli et al.,  2018); (‘Mouse gut’) a 
n =  11 m =  1 mouse gut microbial community includ-
ing the difficult- to- remove pathogen Clostridium dif-
ficile (Stein et al.,  2013) based on data from (Buffie 
et al., 2012); and (‘Protist’) a n = 11, m = 1 protist and 
rotifer community based on A values from Carrara 
et al. (2015) and r values from Carrara et al. (2012) and 
supplemented by additional r values for two missing 
taxa (pers. comm. F. Altermatt, May 7, 2021).

Computational experiments

We performed A* experiments over all multiple action 
cost combinations and action magnitudes. Addition 
and deletion actions used � in 

{
10

−1
, 10

−3
, 10

−5
}
. Each 

type of action q used costs in 
{
10

−1
, 10

0
, 10

1
}
. We also 

tested whether capping the total number of actions be-
fore a wait (a scenario where actions should be simple 
to implement) influenced navigation. This comprises 
3 × 34 × 2 = 486 experiments per dataset. Impacts of cap-
ping were minimal so main- text results only consider 
no capping, with capped results provided in raw output 
files. For each dataset, we picked 10,000 random pairs 
of initial and desired states. We determined whether a 
non- brute- force navigation solution existed for each 
dataset for 10,000 subsampled state pairs for which both 
start and end states are feasible and stable. State pairs 
were sampled without replacement using a fixed random 
number generator seed within each dataset to enable di-
rect comparison between experimental results with dif-
ferent hyperparameter choices.

Statistical analysis

To address Question 1, for each A* experiment, we de-
termined whether non- brute- force navigation was pos-
sible via any path. We also visualised state diagrams for 
selected cases, and determined whether, across cases, 
some intermediate states were more commonly visited 
(i.e., variation in node degree and centrality).

To address Question 2, for each A* experiment where 
non- brute- force navigation was possible, we determined 
whether the lowest cost path was direct or a shortcut. 
We assessed variation in path length, and also visualised 
paths for selected cases.

To address Question 3, we built a random forest model 
that outputs probabilities, where path type (brute- force, 

direct, shortcut) was the dependent variable. Predictor 
variables reflected several easily measured state prop-
erties, assuming no knowledge about the state diagram 
or the GLV dynamics: change in mean abundance, rich-
ness, and Jaccard similarity between initial and desired 
states; log10�; n; m; all four costs Cq; and dataset name. 
To reduce computational costs, a subset of 100 (or the 
maximum available) state pairs were randomly sampled 
from each of the 2916 A* experiments, after which we 
balanced the sampling by path type (brute- force, direct, 
shortcut) to the minimum number of samples available 
in each type. The final dataset comprised 25,782 cases. 
We used default parameters in the ranger package (ver-
sion 0.14.1). We calculated a permutation importance 
for each predictor, made partial dependence plots for 
the most important predictors, and calculated the over-
all accuracy using a 10- fold cross- validation in the caret 
package (version 6.0– 93). All analyses were performed in 
R (version 4.2.0).

RESU LTS

Question 1: Navigation

State diagrams had complex topologies that varied 
widely with dataset (Figure 2). Some datasets only con-
tained a small fraction of feasible and stable states, lim-
iting non- brute- force navigation among low- richness 
states (e.g., protist), while others supported navigation 
to high- richness states (e.g., mouse gut). Higher richness 
transient states used for navigation occurred widely in all 
datasets, indicating that species interactions, here com-
petitive exclusions, played a key role in navigation, but 
also represented a potential hazard if they would be un-
safe to reach (see Discussion). Actions were dominated by 
additions in some datasets (e.g., human gut, mouse gut) 
and by deletions in others (e.g., ciliate+environment3, 
ciliate+environment5), though actions comprising both 
additions/deletions also occurred (Figure S1).

Varying the GLV parameterisation influenced the 
state properties, and thus the possible navigation targets. 
Varying � changed the topology of the state diagram, with 
larger � often resulting in more edges, but sometimes loss 
of edges (Figure S2). For a fixed state diagram topology, 
varying the costs Cq influenced the edge weights and thus 
the navigation paths.

Navigation probabilities, defined as the number of 
state pairs connected by a non- brute- force path di-
vided by the number of feasible and stable state pairs, 
varied widely (Figure 3a). Probabilities were lowest for 
the human gut and highest for the ciliate+environment5 
dataset. Increasing � increased probabilities for all data-
sets. Some intermediate states were consistently visited 
(Figure S3), showing that there are hubs on the state dia-
gram. However, hubs were not common in the ciliate+en-
vironment datasets, suggesting that environmental 
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6 |   NAVIGATION BETWEEN COMMUNITY STATES

variation enables more diverse navigation pathways. 
Hubs were not correlated with in- degree or out- degree 
on the state diagram (Figure S4). In general, there was 
a trade- off between in-  and out- degree, indicating that 
states that are easier to reach are harder to leave, and 
vice versa.

Question 2: Shortcut properties

Shortcut probabilities, defined as the probability a state 
pair was connected by a shortcut, conditioned on navi-
gation between the states being possible, also varied 
substantially (Figure 3b). Shortcut probabilities ranged 
from 14% to 71% across datasets and � values, except for 
the ciliate dataset at 0%. Increasing � did not consistently 
increase shortcut probability.

Among shortcut paths, the number of steps varied 
widely (Figure S5). The mouse gut and ciliate+environment 

datasets consistently had the longest path lengths, some 
involving as many as eight sequential actions, which is 
consistent with the greater number of links present in 
their state diagrams (Figure 2). Other datasets typically 
involved paths comprising 2– 4 actions.

Visualising shortcut paths illustrates the complex-
ity of navigation. In the mouse gut, completely re-
moving the pathogen C. difficile when it is initially 
present was often possible. For the experimental con-
ditions described in Figure  2, we found 4304/10,000 
cases with the pathogen present; of these, a complete 
removal via shortcut was possible in 111 cases. Two 
examples are shown in Figure  4a,b. Similarly, com-
munity turnover is often achievable by leveraging en-
vironmental change, as in the ciliate+environment5 
dataset. Also for the experimental conditions de-
scribed in Figure 2, we found 716/10,000 cases that had 
no net change from 15°C growth; of these, reduction 
in richness via shortcuts leveraging environmental 

F I G U R E  2  Example state diagrams for all datasets. Circles represent fixed point states and are coloured green if feasible and stable (i.e., 
possible navigation target), and grey if not. Orange circles indicate transient states that have higher richness than their pre- action state. States 
are arranged by richness on the y- axis, with the empty state at bottom and the maximum richness state at top. Arrows indicate actions; redder 
arrows are primarily deletions, while bluer arrows are primarily additions, and intermediate colours indicate mixtures of both additions 
and deletions; arrow thickness indicates inverse action cost (thicker = lower cost). Panels (b) and (c) indicate cases where there are multiple 
environments. For visual presentation, environment- changing actions are not separately coloured, and states are not ordered by environment 
(this is why there is more than one state shown at minimum/maximum richness). Visualisations are for C�−addition = 1- , C�−deletion = 1, Cenvironment = 1,  
Cwait = 0.1, and � = 0.1. See Figure S8 for the ‘ladder’ path subset (the invasion graph) and Figure S9 for the ‘snake’ path subset (the un- invasion 
graph).
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   | 7BLONDER et al.

change was possible in 206 cases. Two examples are 
shown in Figure  4c,d. In all cases, navigation used 
timely actions to cause useful competitive exclusions, 
which allowed jumping between states until the de-
sired state was reached. In other cases (not shown) 
where C�−deletionis assumed smaller, �- deletions were 
more commonly used.

Question 3: Predicting shortcuts

The random forest model of path type (brute- force, 
direct, shortcut) had a cross- validation accuracy of 
77.2%. Permutation importances of predictors var-
ied widely (Figure  S6). The most important predictors 
were ∆Richness and ∆Abundance (desired state value 
minus initial state value) (Figure 5; Figure S7). Shortcut 
paths were most probable when ∆Richness was positive 
and ∆Abundance was negative, that is, cases involving 

introducing species and displacing dominant species. 
Shortcut paths were also more probable when Jaccard 
similarity was small, � was large, and m was large; costs 
had negligible effects (Figure 5).

DISCUSSION

We showed that navigation between states is an equiva-
lent problem to searching for lowest cost sequences of ac-
tions that comprise direct and shortcut paths. Shortcuts 
can be obtained by using small sequential abundance 
perturbations (e.g., low- density introductions) and en-
vironment perturbations to nudge communities be-
tween states. Shortcuts were most probable when large 
richness- increasing, abundance- decreasing, similarity- 
decreasing state shifts were desired, when perturba-
tion size (�) was large, and when environmental change 
was possible. Thus, our work suggests that brute- force 

F I G U R E  3  (a) Probability that non- brute- force navigation is possible between two randomly selected feasible and stable states. (b) 
Probability that a shortcut path exists between two randomly selected states, given that navigation is possible. Bars indicate different datasets 
and are coloured by �. Error bars in panel (b) indicate standard deviations across assumed costs Cq; no error bars are shown in (a) because costs 
do not influence estimates.
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8 |   NAVIGATION BETWEEN COMMUNITY STATES

approaches to navigation like antibiotics or clearcutting 
may have realistic and less impactful alternatives.

Application cases

The approach could be used for navigation problems 
where there are a finite number of fixed points to be 
considered, and where the time to reach a fixed point is 
substantially smaller than the timescale of the overall 
problem. Realistic application cases may include com-
munities with fast population dynamics, for example, 

microbial communities or bioreactors/chemostats, or 
annual plants. Optimistic application cases could in-
clude resolving human health problems that are linked 
to the microbiome (Sonnenburg,  2015; Sonnenburg & 
Sonnenburg, 2019), for example, C. difficile removal, or 
improvement of crop/soil health via associated micro-
bial communities (Mueller & Sachs, 2015). Additionally, 
applications could be possible in restoration projects 
(D'Antonio & Meyerson, 2002; Perring et al., 2015).

The state diagram approach could also be useful for 
assembling synthetic communities, for example, in mi-
crobial bioreactor applications (Baranwal et al.,  2022; 

F I G U R E  4  Example shortcut paths for (a, b) completely removing the pathogen Clostridium difficile in the mouse gut dataset, and (c, d) 
reducing species richness via environmental change in the ciliate+environment5 dataset. Each panel indicates states connected by sequential 
actions on the x- axis, ordered by richness on the y- axis. Green boxes indicate feasible and stable states, with the initial state on the left and 
the desired state on the right. White boxes indicate actions, with �- additions as blue ‘+’, �- deletions as red ‘−’, environment changes as orange 
‘*’, and waits as grey ‘.’. Visualisations are for costs C�−addition = 1, C�−deletion = 10, Cenvironment = 1, Cwait = 0.1 , and � = 0.1 (i.e., 10 × more costly to �
- delete than �- add). Taxon names are in Table S1. (a) 1: One species is introduced at low density and another is given a small negative abundance 
perturbation, causing the establishment of one species and the competitive exclusion of three others. 2: Three species are introduced at low 
density, causing the competitive exclusion of C. difficile. 3: Two species are introduced at low density, yielding competitive exclusion of one 
species and coexistence of four species in the desired state. (b) 1: Two species are introduced at low density, causing one competitive exclusion. 
2: One species is introduced at low density, causing two competitive exclusions. 3: Three species are introduced at low density, causing the 
competitive exclusion of C. difficile and two other species. 4: Two species are introduced at low density, yielding competitive exclusion of three 
species and coexistence of two species in the desired state. (c) 1: The environment is warmed, causing competitive exclusion of two species. 2: 
One species is introduced at low density and the environment is cooled, causing coexistence of two species in the desired state. (d) Similar to (c).
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   | 9BLONDER et al.

Clark et al.,  2021). This problem maps onto the navi-
gation problem, because the desired state is a certain 
feasible and stable community and the initial state is an 
empty community. Action sequences could be identified 
to achieve these goals when brute- force assembly of the 
desired state is not possible or efficient.

Extensions to the navigation approach

We implicitly assumed that the species pool richness 
was relatively low, which allowed us to use the A* algo-
rithm. This algorithm does not work well when n or m 
are large, because the state diagram becomes too large 

F I G U R E  5  Partial dependence plots indicating the effect of each individual predictor on the probability of navigation yielding a brute- 
force solution, direct path, or shortcut path.
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10 |   NAVIGATION BETWEEN COMMUNITY STATES

to explore. However, the pathfinding problem does not 
actually require full exploration of the state diagram if 
quasi- optimal solutions are acceptable. Such solutions 
can be found through local search, which only requires 
enumeration of a smaller set of states that are transiently 
reached, plus a slightly larger set of states that are ex-
plored and discarded. Approximate algorithms, such as 
Monte Carlo Tree Search (MCTS) (Browne et al., 2012) 
can be used for larger problems by focusing computa-
tion only on promising state and action sequences. 
Moreover, MCTS can handle stochastic transitions, as 
well as uncertainty in observations of states when the 
problem is formulated as a partially observable Markov 
decision process (Katt et al., 2017; Lim et al., 2021; Lim 
et al., 2022).

We also assumed that navigation problems involve a 
single desired state. However, in realistic use cases, more 
diffuse targets may exist, for example, any state with 
high richness, or where a certain species is present, or 
where mean trait composition is within a certain range. 
A* cannot handle this scenario, but MCTS can.

In addition, we assumed that the costs of each action 
are constant by type. However, �- deleting one species 
might be more costly than for another, either because the 
time or effort required is high or may depend on whether 
a third species is also present. Or the costs of different 
actions may also not be known in advance. Similarly, we 
assumed that the magnitude of actions (�) is constant. 
Based on our computational experiments, variation in 
action costs seems unlikely to substantially impact nav-
igation, whereas variation in action magnitude does, 
with larger � enabling more shortcuts. MCTS could also 
be used to probabilistically identify navigation solu-
tions when costs are unknown or variable (Deglurkar 
et al., 2021).

Last, we assumed that there are no feedbacks among 
the environment and species, for example, depletion of 
limiting resources affecting competition (Tilman, 1982). 
These effects would shift the identity of and relationships 
among fixed points. Including them is possible if the en-
vironment variables can be treated as state variables, 
which would require some modification of the current 
implementation.

Trajectories do not necessarily reach fixed points in 
other models, and could instead reach other attractors 
like limit cycles. Additionally, multiple fixed points for 
each combination of species could exist, meaning that 
the value of � would take a larger role in determining 
which basin of attraction was reached. Both scenarios 
would increase the cardinality of the state space and 
action space. However, if ‘states’ and ‘actions’ can still 
be defined, then a discretised state diagram can still be 
constructed.

Safe navigation is also a priority for applications. 
Navigation should avoid certain states if they are un-
ethical to create, or if their creation would have negative 
ecological consequences (Aswani et al.,  2013; Mohseni 

et al.,  2021). Notably, many paths discovered by our 
approach transiently put the community into higher 
richness states that include novel species (e.g., orange- 
coloured states in Figure  2). This strategy may have 
substantial risk if those novel species escape due to mech-
anisms not included in the dynamical model. Adding 
safety constraints could strongly influence reachability 
of desired states (Bansal & Tomlin, 2020) and require al-
gorithms beyond our current implementation.

Implications for community assembly

State diagrams provide potential linkages to commu-
nity assembly, under the assumption that the invasion 
of new species is infrequent relative to the dynamics. 
The invasion graph (Hofbauer & Schreiber, 2022) is the 
subgraph of the state diagram comprising only actions 
that include a single addition and then a wait action 
(all richness- increasing ‘ladders’; Figure S8). These ac-
tions, and the states they connect, enumerate the most 
complex communities that can be reached via sequen-
tial single invasions. Notably, most states cannot be 
reached this way; they instead require more complex 
actions present in the full state diagram (e.g., direct 
paths involving multiple simultaneous additions and 
then a wait; or shortcut paths involving multiple wait 
actions). Conversely, one can also conceptualise an 
‘un- invasion’ graph, which is the subgraph of the state 
diagram comprising the wait actions linking transient 
states to fixed point states with no environment change 
(all richness- decreasing ‘snakes’; Figure S9). These ac-
tions, and the states they connect, enumerate the pos-
sible paths by which transiently reached communities 
can decay into stable communities. The un- invasion 
and invasion graphs have non- trivial structures that 
may be useful for describing community assembly/
dis- assembly pathways. We have not yet investigated 
the general properties of these subgraphs, but see 
Almaraz et al.  (2022), Hang- Kwang and Pimm  (1993) 
and Hofbauer and Schreiber (2022).

Second, state diagrams may also help understand 
priority effects, that is, order- dependent community 
assembly (Fukami,  2015). This is because repeatedly 
taking single actions and then waiting potentially has 
outcomes that depend on the order of operations; more 
strongly, taking multiple actions at the same time and 
then waiting may have different consequences than 
taking each action in sequence. We did not system-
atically study  this order dependence, but see Serván 
et al. (2018)).

Third, some states may be harder to reach than 
others, both in community assembly and in naviga-
tion. States that have no incident paths are impossible 
to reach except by brute- force assembly, while those 
that have very few outgoing paths (especially involv-
ing shortcuts) are potentially less likely to reach by 
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   | 11BLONDER et al.

chance. These states are related to the ‘holes’ described 
by Angulo et al. (2021). Initial states with very few out-
going paths are potentially less likely to change state 
by chance. States that are only reached by ‘ladders’ 
may be more easily built up from lower richness states, 
while states that are only reached by ‘snakes’ may be 
more easily broken down from higher richness states. 
In support of this idea, species combinations most 
likely to persist under environmental perturbation are 
more frequent (Medeiros et al., 2021). There may also 
be ‘game changing’ species (Deng et al., 2021) that are 
disproportionately important for shaping the proper-
ties of the state diagram, both in terms of the preva-
lence and identity of feasible and stable states, as well 
as the prevalence and identity of shortcuts.

CONCLUSION

State diagrams may be useful for solving applied naviga-
tion problems and understanding community assembly. 
Our current work is limited by its focus on numerical 
simulation for a single dynamical model. Adapting co-
existence theory (Gibbs et al., 2022; Levine et al., 2017; 
Saavedra et al., 2017) to make general predictions about 
state diagram topology may be fruitful. Additionally, 
experimental validation of navigation predictions for 
community ecology has been absent except in a few 
microbial (Baranwal et al., 2022; Clark et al., 2021) and 
insect (Desharnais et al., 2001) cases. Validation is a pri-
ority next step for making progress towards real- world 
applications.
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