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1  |  INTRODUC TION

Functional diversity represents a key component of biodiversity 
that influences the functioning of ecosystems (Mouchet et al., 2010; 
Tilman et al., 2014). Community ecologists rely on functional 

diversity metrics derived from traits as a proxy of the functions pro-
vided by biological assemblages to the ecosystems because of the 
difficulties in measuring functions directly (Carmona et al., 2017; 
Hatfield et al., 2018). These metrics generally perform better than 
species richness or abundance in predicting ecosystem functioning 

Received: 15 November 2022  | Accepted: 6 April 2023

DOI: 10.1111/1365-2435.14344  

R E S E A R C H  A R T I C L E

N- dimensional hypervolumes in trait- based ecology: Does 
occupancy rate matter?

Alex Laini1  |   Thibault Datry2  |   Benjamin Wong Blonder3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

1Dipartimento di Scienze della Vita e 
Biologia dei Sistemi, Università di Torino, 
Torino, Italy
2INRAE, UR RiverLy, Centre de Lyon- 
Villeurbanne, Villeurbanne Cedex, France
3Department of Environmental Science, 
Policy, and Management, University of 
California Berkeley, Berkeley, California, 
USA

Correspondence
Alex Laini
Email: alex.laini@unito.it

Funding information
ANBI Emilia- Romagna; Autorità di Bacino 
Distrettuale del Fiume Po; Regione Emilia- 
Romagna

Handling Editor: Joseph A. Tobias

Abstract
1. Many methods for estimating the functional diversity of biological communities 

rely on measuring geometrical properties of n- dimensional hypervolumes in a 
trait space. To date, these properties are calculated from individual hypervolumes 
or their pairwise combinations. Our capacity to detect functional diversity pat-
terns due to the overlap of multiple hypervolumes is, thus, limited.

2. Here, we propose a new approach for estimating functional diversity from a set 
of hypervolumes. We rely on the concept of occupancy rate, defined as the mean 
or absolute number of hypervolumes enclosing a given point in the trait space. 
Furthermore, we describe a permutation test to identify regions of the trait space 
in which the occupancy rate of two sets of hypervolumes differs.

3. We illustrate the utility of our approach over existing methods with two exam-
ples on aquatic macroinvertebrates. The first example shows how occupancy rate 
relates to the stability of trait space utilisation due to increased flow intermit-
tency and allows the identification of taxa in regions of the trait space with low 
occupancy rates. The second example shows how the permutation test based on 
occupancy rates can detect differences in trait space utilisation due to river mor-
phology variation even with a high degree of overlap among input hypervolumes.

4. Our newly developed approach is particularly suitable in functional diversity 
analysis when investigating patterns of overlap among multiple hypervolumes. 
We emphasise the need to consider analyses based on occupancy rate into func-
tional diversity estimation.
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due to their intrinsic link to the mechanism- generating functions 
(Gagic et al., 2015; Lucas et al., 2021).

Several methods for estimating functional diversity exist, 
many of them relying on the n- dimensional hypervolume concept 
(Hutchinson, 1957). The first attempt to define and quantify n- 
dimensional hypervolumes derived from the convex- hull concept, 
the smallest convex set of multidimensional space enclosing all points 
(Cornwell et al., 2006; Villéger et al., 2008). Convex- hulls are sensi-
tive to outliers and do not consider disjunctions or holes in the hy-
pervolume, thus impairing the computation of their volume and their 
overlap with other hypervolumes (Blonder et al., 2014; Mammola 
et al., 2021). To address these problems, Blonder et al. (2014, 2018) 
proposed a method that describes n- dimensional hypervolumes as 
a set of uniformly distributed random points each associated with a 
probability density estimate for the underlying dataset, generated 
via kernel density estimation or other modelling approaches (e.g. 
support vector machines). Irrespective of the method used, geo-
metrical properties (e.g. volume) of n- dimensional hypervolumes 
have become established functional diversity metrics (Mammola & 
Cardoso, 2020; Villéger et al., 2008).

Current metrics based on n- dimensional hypervolumes are lim-
ited because they can only handle information about one (alpha di-
versity measures) or two hypervolumes (beta diversity measures) 
simultaneously. Size- based metrics, that quantify the amount of trait 
space (e.g. area or volume) enclosed by a set of species, are calcu-
lated individually for each community (Mammola & Cardoso, 2020; 
Mason et al., 2005; Villéger et al., 2008). On the other hand, position- 
based metrics, that measure the shift in the multidimensional space 
(e.g. centroids shift, overlap), are limited to pairwise combinations of 
hypervolumes (Brown et al., 2020; Guillerme et al., 2020; Loranger 
et al., 2016). All these metrics do not consider patterns emerging 
from the overlap of multiple hypervolumes (e.g. tens, hundreds), 
with some regions potentially showing more overlap than others.

Similar problems arise when analysing functional diversity met-
rics because common approaches do not quantify the amount of 
shared trait space by multiple hypervolumes effectively. Most ap-
proaches, including regression- based techniques (Maas et al., 2021) 
and null modelling approaches (Loranger et al., 2016), target the 
mean response of functional diversity metrics calculated on each 
hypervolume (e.g. significance of the difference in the mean volume 
among groups). Moreover, although position- based metrics are well 
suited to measure the amount of shared trait space, they are limited 
to pairwise comparisons and become infeasible to calculate (nearly 
5 × 105 comparisons for 1000 hypervolumes) and difficult to anal-
yse (pseudo- replication issues) with a high number of hypervolumes. 
The use of sequential pairwise comparisons could be useful to in-
vestigate the overlap of multiple hypervolumes, but it is problematic 
because sequential operations may introduce noise (e.g. increased 
bias or variance) into estimates. Lastly, when communities can be 
grouped according to a grouping factor (e.g. invaded vs. control), 
some authors calculate functional diversity metrics by pooling data 
to obtain a single community for each group (e.g. Takács et al., 2021), 
thus losing information about heterogeneity in trait space utilisation.

To cover this gap, we introduce the concept of occupancy rate as 
the mean or absolute number of hypervolumes including a point in 
the trait space. The occupancy rate is intended to reflect the hetero-
geneity of trait space overlap among multiple hypervolumes, which 
could be in turn associated with relevant ecological processes. For 
example, when studying biological communities, regions of the trait 
space with low overlap could be associated with random dispersal 
events while regions with high overlap could be related to a core set 
of functions shared among multiple communities. Furthermore, spe-
cies in areas of the trait space with low occupancy rates could show 
low redundancy within a specific group of communities. This is even 
more important when comparing groups of hypervolumes, for which 
size-  and position- based metrics can return similar values even if the 
overlap patterns differ among groups (Figure 1).

Here we propose an approach to quantify the occupancy 
rate through probabilistic n- dimensional hypervolumes (Blonder 
et al., 2014) and develop a permutation test to evaluate differences 
in occupancy rates among groups of hypervolumes. We test the 
performance of the new approach with simulations, and we demon-
strate its advantages over existing methods with two examples 
grounded in the ecology of aquatic macroinvertebrates. These or-
ganisms are among the most important indicators of river quality 
and are strongly dependent on temporal and spatial flow patterns 
(Bo et al., 2017; Sarremejane et al., 2020). The first example assesses 
the effect of flow intermittence (period of time during the year with 
no or lack of flow) accounting for the body size of aquatic macroin-
vertebrates and shows how occupancy rates relate to environmental 
gradients and functional redundancy. The second example assesses 
variations in trait space overlap among macroinvertebrate commu-
nities due to river morphology and shows how occupancy rates can 
highlight among- group differences even with highly overlapped hy-
pervolumes. We compare the results of our approach with those 
obtained using current functional diversity metrics and discuss their 
link with community assembly processes, such as dispersal and en-
vironmental filtering.

2  |  MATERIAL S AND METHODS

2.1  |  Probabilistic n- dimensional hypervolumes, a 
brief overview

The occupancy framework builds on the approach proposed by 
Blonder et al. (2014) and Blonder et al. (2018) to estimate probabilistic 
n- dimensional hypervolumes. Briefly, these authors provide different 
methods (hyperbox kernel, gaussian kernel, support vector machine, 
estimation using arbitrary functions) for building hypervolumes from a 
set of points in an n- dimensional space. Here we focus on the Gaussian 
kernel density estimate (KDE) to describe the principles underlying 
hypervolume constructions, but similar principles apply to the other 
methods. In a Gaussian KDE, all points contribute to the overall prob-
ability density. At first, uniform random points are drawn from hyper-
ellipses surrounding each point and then these points are resampled 
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    |  3Functional EcologyLAINI et al.

to uniform density. The kernel density is estimated for each random 
point and only the points above a threshold enclosing a certain quan-
tile of the probability or volume are retained to describe the hyper-
volume (see box 1 in Blonder et al., 2018). Therefore, a probabilistic 
n- dimensional hypervolume is described by a set of random points 
from which several properties can be inferred (e.g. volume, position).

2.2  |  Methods for calculating occupancy rates

The first step for calculating occupancy rates is to select a set of ran-
dom points describing the union of q > 1 hypervolumes. Two meth-
ods are used to accomplish this task. The subsampling method joins 
the random points of the q hypervolumes and then selects a uni-
formly distributed subset of them. The method box creates a bound-
ing box around the union of the q hypervolumes that is then filled 

with random points drawn from a uniform distribution at a specified 
density.

An inclusion test is used to determine if each random point lies 
within one or more of the q hypervolumes. The inclusion test is 
based on a recursive partitioning tree data structure to efficiently 
search for inclusion within a hyperellipse, implemented in the unex-
ported function evalfspherical() of the package hypervolume (Blonder 
et al., 2014) for the R statistical software (R Core Team, 2021). 
Results of the inclusion test are converted into a binary matrix (1,0) 
with the number of columns and rows equal to the number of hy-
pervolumes being considered and the number of random points, 
respectively. Within the binary matrix, 1 means that a hypervolume 
includes a given random point and 0 that it does not. For each ran-
dom point, the occupancy rate is calculated by applying a function 
to each row (e.g. mean) of the binary matrix. The entire process for 
calculating occupancy rates is described in Figure 2. Besides the 

F I G U R E  1  Limitations of current approaches to estimate functional diversity. Panels (a, d, g) include 1000 randomly generated ellipses. 
Mean volume and volume of the union of hypervolumes are equal among panels. Panels (b, e, h) represent occupancy rate estimates based 
on the probabilistic n- dimensional representation of hypervolumes of panels (a, d, g). Here, the occupancy rate is computed as the number 
of hypervolumes enclosing a given random point. Panels (c, f, i) represent the smoothed density estimate of occupancy rate values across all 
random points. Panels (a, d) differ in their overall occupancy rate patterns. Panels (a, g) have similar occupancy rate patterns, but a different 
trait space utilisation.
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4  |   Functional Ecology LAINI et al.

calculation of occupancy rates, the volume of the union of the input 
hypervolumes is calculated as the weighted sum of the volumes of 
input hypervolumes, where weights are proportional to the degree 
of overlap of the target hypervolume to the other hypervolumes. 
Both the subsampling and box methods introduce biases that cause 
a slight change in the volume of the input hypervolumes. To check 
whether the re- computed volumes are consistent with the original 
ones two measures of goodness of fit are calculated, the mean abso-
lute error and the root mean square error (RMSE). Occupancy rates 
can be calculated for groups of observations such as those emerging 
from repeated measures over space, time or treatments.

2.3  |  Between- group differences in 
occupancy rates

We developed a permutation test to evaluate differences in the 
occupancy rate of each random point between two groups of hy-
pervolumes, as described further in Chen et al. (2023). For each 
pairwise group comparison, original hypervolumes are randomly as-
signed to one of the two groups under comparison. The test itself 

is performed by counting the number of times the observed differ-
ences are smaller or greater than those expected by chance, or by 
combining them for obtaining a two- tailed test.

2.4  |  Simulations

2.4.1  |  Comparison of the performances of the 
subsample and box methods

We compared the speed and accuracy of the subsample and box 
methods for different volumes of input hypervolumes. We ran-
domly generated 5 hyperspheres from 100 randomly generated 
points at different radii (1, 5, 15) and for dimensions ranging from 
1 to 5 using the package uniformly (Laurent, 2022). The perfor-
mances of the two methods were evaluated by (i) recording the 
time needed to complete the analysis and (ii) calculating the 
normalised root mean square error (NMRSE) between input and 
re- constructed hypervolumes. NMRSE allows the comparison of 
the performances at different number of dimensions and was cal-
culated as the RMSE divided by its standard deviation. The box 

F I G U R E  2  Rationale of the occupancy rate framework. (a) Two methods are implemented to find a set of uniformly- distributed random 
points to describe the union of two or more hypervolumes. Once the set of random points has been obtained, the occupancy rate is 
calculated as a function (e.g mean) of the number of hypervolumes enclosing each random point. (b) Calculation example for occupancy rates 
based on sum and mean as summary statistic.

C.

hv1 hv2 sum mean

A 1 1 2 1

B 1 1 2 1

C 0 1 1 0.5

D 1 0 1 0.5

E 1 1 2 1

F 1 0 1 0.5

occupancy 1.5 0.75

ba

.A

.B

.D
.E

.F

 13652435, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.14344, W

iley O
nline L

ibrary on [08/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5Functional EcologyLAINI et al.

method was tested at two box densities (500 and 5000, the latter 
being the default value in the hypervolume package). We used the 
mean as the summary statistics for this and the other simulations 
because the sum provided analogous results with the simulation 
settings used in this work.

2.4.2  |  Behaviour of the metric to increasing volume 
variability of input hypervolumes

We simulated the effect of an increasing variability of hypervolume 
volumes on occupancy rate estimation. To do this, we randomly 
generated numbers following a truncated normal distribution with 
a mean of five and an increasing standard deviation (from 0.1 to 
4.1 by a step of 0.5 for a total of nine levels of standard devia-
tion). For each level of standard deviation, we simulated 10 values 
representing the volume of the hypersphere. To build hypervol-
umes, we first derived the radius r of the hypersphere from the 
simulated volumes and then we randomly generated 1000 points 
from a uniform distribution within a hypersphere of radius r and 
origin at 0 with the package uniformly. These points were used as 
the input to build hypervolumes with a Gaussian KDE and default 
settings. We then calculated occupancy rates for each simulated 
level of standard deviation and for five dimensions (1– 5) both with 
the subsample and the box methods and compared the results with 
the expected results. Seven box densities (500, 1000, 2500, 5000, 
7500, 1000) were tested for the box method. The comparison with 
the expected results was performed using the slope and the R2 
of a linear regression model. The slope was used to evaluate the 
deviation of the observed from the expected result (with a perfect 
match the slope is equal to 1), while the R2 to evaluate the accu-
racy of the method used (subsample or box).

2.4.3  |  Behaviour of the permutation test

We tested the performance of the permutation test on two 
groups of simulated n- dimensional spheres. The first group con-
sisted of 10 hypervolumes simulated by drawing 1000 random 
points from a hypersphere of radius 1 centred at −1 with an in-
creasing number of dimensions (e.g. two dimensions: x = −1, y = −1; 
three dimensions: x = −1, y = −1, z = −1) using the package gena 
(Potanin, 2022). The second group was simulated in the same way 
as the first except that hypervolumes were centred at 1. By con-
struction, all the hypervolumes should have the same volume (e.g. 
for two- dimensional hypervolumes a volume of 3.14), although 
deviations are expected due to the random nature of probabil-
istic n- dimensional hypervolume estimation. The deviation from 
the expected volume is expected to increase with an increasing 
number of dimensions because the same number of random points 
(1000) was used for hypervolume construction. Our newly devel-
oped approach was applied with and without specifying groups 
using both the subsample and box methods. Moreover, we tested 

the effect of an increasing box density on the results of the box 
methods.

2.5  |  Case studies

2.5.1  |  Example 1: Does flow intermittence favour 
small- bodied species of aquatic macroinvertebrates?

We evaluated the effect of flow intermittence on the body size of 
aquatic macroinvertebrates along a flow intermittence gradient. 
Evidence exists that small body size promotes survival at intermit-
tent sites (Arias- Real et al., 2022; Piano et al., 2020) because re-
duced dimensions allow fast development and population growth 
(Bonada et al., 2007) and resistance in the hyporheic zone (Bêche 
et al., 2006). At flow resumption, species with small body size can 
quickly recolonize intermittent sites. A gradual decrease in the vol-
ume of hypervolumes built on body size is, thus, expected with in-
creasing distance from upstream, colonist- source sites. After some 
months from flow resumption, a complete recolonisation even from 
larger- bodied species can occur and, thus, the trait space volume 
is expected to be comparable between perennial and intermittent 
sites. Therefore, we hypothesise a decrease in the mean occupancy 
rate with increasing distance from the upstream perennial source 
because of reduced volume at most intermittent sites at flow re-
sumption. Moreover, we expect a decrease of the occupancy rate 
in the regions of the trait space occupied by moderate/large- bodied 
taxa with increasing flow intermittence.

To test our hypothesis, we used a subset of the dataset described 
in Datry (2012). Briefly, macroinvertebrates were collected from 10 
sites distributed longitudinally across 20 km in the Albarine River 
(Eastern France). Across 2009 and 2010, samples were collected in 
autumn (October 2009 and November 2010; <3 weeks after flow 
resumption) and spring (April 2009 and 2010; 3– 5 months after 
flow resumption) using standard approaches. The dataset includes 
presence– absence data of one perennial site and nine intermittent 
sites for a total of 40 observations (10 sites × 4 sampling dates). 
Annual flow intermittence, defined as the percent of the year that a 
site was non- flowing, spans from 0% (perennial site) to 36.1% (most 
intermittent site; Table 1). Flow intermittence increases with dis-
tance downstream along the intermittent section due to transmis-
sion losses into the underneath groundwater (Datry, 2012).

The trait space was built from the maximum body size of 
aquatic macroinvertebrates included in the DISPERSE database 
(Sarremejane et al., 2020). Maximum body size in the DISPERSE 
database is represented as fuzzy coded values divided into 7 cat-
egories (<0.25 cm, ≥0.25– 0.5 cm, ≥0.5– 1 cm, ≥1– 2 cm, ≥2– 4 cm, 
≥4– 8 cm, ≥8 cm). Fuzzy coding describes the affinity of a taxon for 
different categories of a given trait and each taxon can have affin-
ities for more than one category (Chevene et al., 1994). For each 
category, affinity scores span from 0 (no affinity) to 3 (maximum 
affinity). For each taxon, affinity scores were divided by the row 
sum prior to the analysis. Affinity scores were then averaged when 
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multiple traits were available for a given taxon (e.g. when genus- 
level information was available for traits but family- level informa-
tion was present in the community composition dataset). The effect 
of trait averaging on the results was also assessed. We obtained the 
trait space with a classical multidimensional scaling (MDS) on the 
mixed- variables coefficient of distance, an algorithm suitable for 
fuzzy- coded data (Pavoine et al., 2009). For each of the 40 observa-
tions, hypervolumes were obtained with a Gaussian kernel density 
from the first two dimensions of the trait space. A fixed bandwidth 
calculated using the Silverman estimator on all the MDS coordi-
nates was used to estimate all the hypervolumes. The mean occu-
pancy rate was then calculated for each site using the box method 
at 5000 box density. To test our hypotheses, Pearson correlation 
between the percentage of intermittence and the mean occupancy 
rate was calculated. The correlation of the percentage of intermit-
tence with the mean volume of input hypervolumes and the volume 
of the union of input hypervolumes was also calculated. Moreover, 
we estimated a linear mixed- model to test the relationship between 
the volume of individual hypervolumes and flow intermittence 
using site as the random intercept. The mixed model was estimated 
with the lmerTest package (Kuznetsova et al., 2017).

We then searched for taxa in regions of the trait space with low 
occupancy rate. To do this, we calculated the mean occupancy rate 
in the proximity of the MDS coordinate of each species within a cir-
cle with a radius of 0.029.

2.5.2  |  Example 2: Does river morphology 
affect flow velocity preferences of aquatic 
macroinvertebrates?

The second example explored differences in the occupancy rate 
among mesohabitats differing in flow velocity using a trait space 

based on the flow velocity preferences of aquatic macroinverte-
brates. Aquatic macroinvertebrates of running waters exhibit a 
wide range of flow preferences, that is, some taxa prefer habitats 
with low or null flow velocity while others prefer habitats with 
high flow velocity. Mesohabitats are geomorphic and hydraulic 
units, generally at 10−1– 10−3 m scale, that have distinct combina-
tions of current velocity, depth and substrate (Belletti et al., 2017). 
Mesohabitats with higher flow velocity (e.g. riffle, glides) generally 
host different communities compared to those with low or null 
flow velocities (e.g. pool, backwater, isolated pond; Laini, Burgazzi, 
et al., 2022). We, thus, expect communities within the same meso-
habitat to occupy different areas of the trait space due to river 
morphology.

We used a dataset of 150 samples collected in three braided 
rivers of northern Italy. Mesohabitat as well as the abundance of 
each taxon were recorded for each sample. Taxonomic resolution 
spanned from genus to family, because of difficulties in identify-
ing larvae to species level. This is a common practice for macroin-
vertebrates and functional index calculation because most traits 
are conserved within higher taxonomic levels (Gutiérrez- Cánovas 
et al., 2015). Details about the methods used to collect the data 
are described in (Laini, Burgazzi, et al., 2022). The trait space was 
obtained from macroinvertebrate flow preferences according to 
Tachet et al. (2010). Flow preferences are coded into four cate-
gories (null, slow, moderate and fast) and each taxon can have an 
affinity for more than one category. Affinity scores, spanning from 
0 (no affinity) to 3 (maximum affinity), were divided by the row 
sum prior to the analysis. Scores were averaged when multiple 
traits were available for a given taxon (e.g. genus- level information 
for traits and family- level information for the community compo-
sition dataset). The effect of trait averaging was also assessed. 
We obtained the trait space with an MDS as in the first example. 
Hypervolumes were obtained for each sample with a Gaussian 

TA B L E  1  Performances of the two methods (subsample and box) for calculating occupancy rates for varying number of dimensions 
(2– 5) and volumes (1, 5 and 15). The box method was tested at two box densities, 500 and 5000. Both the running time (seconds) and the 
normalised root mean square error (NMRSE) are reported.

No. of 
dimensions Radius

Running time NRMSE

Subsample Box 500 Box 5000 Subsample Box 500 Box 5000

2 1 2.81 0.42 0.71 0.31 0.30 0.14

2 5 2.91 1.25 9.83 0.18 0.09 0.08

2 15 2.74 8.53 78.5 0.04 0.08 0.09

3 1 10.75 1.30 2.26 0.36 0.11 0.03

3 5 11.1 3.78 24.1 0.20 0.06 0.07

3 15 10.7 21.2 213 0.18 0.05 0.05

4 1 44.2 4.7 6.7 0.37 0.16 0.05

4 5 48.5 10.6 59.8 0.33 0.05 0.03

4 15 52.1 54.8 495 0.34 0.15 0.14

5 1 166 15.9 21.5 0.45 0.12 0.07

5 5 205 35.3 184 0.57 0.11 0.09

5 15 192 161 1496 0.34 0.07 0.06
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    |  7Functional EcologyLAINI et al.

kernel density from the first two dimensions of the trait space. A 
fixed bandwidth calculated using the Silverman estimator on all 
the MDS coordinates was used to estimate all the hypervolumes 
and kernel density estimation was weighted by the abundance of 
each taxon.

We estimated a linear mixed- model to test the difference in 
the volume of input hypervolumes among mesohabitat using river 
as the random intercept. Pairwise differences among mesohabitats 
were then statistically evaluated with a post hoc test performed 
with the emmeans package (Lenth, 2022). We calculated both the 
mean volume of input hypervolumes and the volume of the union 
of input hypervolumes for each group. We calculated occupancy 
rates with the box method and a box density of 5000. To test our 
hypothesis that communities within the same mesohabitat occupy 
different regions of the trait space compared to other mesohabitats 
we used the newly developed permutation test. Taxonomic and trait 
information was managed with the R package biomonitoR (Laini, 
Guareschi, et al., 2022). Plots were obtained with the ggplot2 pack-
age (Wickham, 2009).

3  |  RESULTS

3.1  |  Simulation results

The subsample and box methods differed in their overall perfor-
mances. The box method performed better than the subsample 
method by a magnitude of 1.02– 12.3 in reconstructing input hyper-
volumes for each number of dimensions based on the NRMSE value 
(Table 1). The accuracy of the box method at the two box densities 
tested was similar, except for the simulation at volume 1. Within sim-
ulations with the same number of dimensions, the running time for 
the subsample method was similar irrespective of the volume tested. 
On the contrary, the box method showed an increased running time 
when increasing the volume of input hypervolumes. The subsam-
ple method was generally faster than the box method for volumes 
greater than 5, although time depended on the box density (500 
faster than 5000) and the number of dimensions.

Overall, both methods showed good performances in detect-
ing patterns when input hypervolumes differed in their volume 

variability (Table 2). The R2 of the model fit between expected and 
observed occupancy rates was close to or greater than 0.9 for all the 
simulations, except for the subsample method in 4 and 5 dimensions. 
However, both methods estimated lower occupancy rates than ex-
pected, as indicated by the slope of the regression. The accuracy 
of the two algorithms in reconstructing occupancy rates decreased 
with increasing the number of dimensions. The accuracy was lower 
for the subsample than for the box method.

Both subsample and box methods were successful in detecting 
between- group differences in occupancy rates. After the permuta-
tion test, the observed volume was close to the expected volume 
(Table 3). However, the simulation exercise showed that the two 
methods, particularly the box method, tend to overestimate the 
volume of the union of input hypervolumes both when groups are 
specified or not. This problem increases with increasing the number 
of dimensions and affects in turn the occupancy rate estimates.

The same results obtained with the mean are expected for the 
sum because the matrix from which both statistics are calculated is 
the same. However, caution is needed when using unbalanced data-
sets where groups differ for the number of observations. In such 
cases, using sum as summary statistics could return results that are 
driven by a different sample size rather than by differences in func-
tional diversity.

3.2  |  Effects of flow intermittence on the body 
size of aquatic macroinvertebrates

The first two MDS axes explained 43.0% and 31.0% of the overall 
variation for a total of 74.0%. The mean volume and standard de-
viation of the n- dimensional hypervolumes as well as the volume of 
the union of input hypervolumes are reported in Table 4. Existing 
metrics were related to intermittency. The relationship between the 
volume of input hypervolumes and intermittence was significant 
(F1,38 = 10.6, p = 0.002). The correlation of intermittence with the 
mean volume of input hypervolumes and the volume of the union 
of input hypervolumes were −0.79 (p = 0.007; Figure 3a) and 0.78 
(p = 0.008, Figure 3b), respectively.

The correlation of intermittence with the mean occupancy rate 
was −0.83 (p = 0.003; Figure 3c), indicating that the extent of the 

No. of 
dimensions Metric Subsample 500 1000 2500 5000 7500

Box 
10,000

2 R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 R2 0.98 0.96 0.97 0.97 0.97 0.97 0.97

4 R2 0.82 0.94 0.93 0.93 0.94 0.94 0.93

5 R2 0.48 0.88 0.87 0.87 0.88 0.87 0.87

2 Slope 0.82 0.85 0.86 0.85 0.85 0.85 0.85

3 Slope 0.67 0.73 0.75 0.74 0.74 0.73 0.74

4 Slope 0.43 0.57 0.58 0.57 0.58 0.58 0.57

5 Slope 0.26 0.43 0.42 0.42 0.42 0.42 0.41

TA B L E  2  Accuracy of the approaches 
for calculating occupancy rates, obtained 
from simulated data. Slope and R2 of 
a linear regression between expected 
and observed values are reported for a 
number of dimensions ranging from 2 
to 5 and for the subsample and the box 
methods. For the box method, results 
obtained at multiple box densities (500, 
1000, 2500, 5000, 7500, 10,000) are 
shown.
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8  |   Functional Ecology LAINI et al.

period without flow affects the body size of macroinvertebrates. 
Traits averaging had a negligible effect on the relationship of flow 
intermittence with the mean occupancy rate and the mean volume 
of input hypervolumes, while it affected its relationship with the vol-
ume of the union of input hypervolumes (Appendix S1).

Areas with low occupancy rates were on the left side of the 
MDS ordination, corresponding to moderate and large- bodied taxa 
(Figure 3). Taxa in areas with low occupancy rates were Gammarus 
(sites T8, T9, T10), Limnephilidae (site T8), Erpobdellidae and 
Niphargus (site T7). These taxa have their highest body size value 
in the ranges ≥1– 2 cm (Gammarus, Limnephilidae) and ≥2– 4 cm 

(Erpobdellidae, Niphargus). Again, trait averaging had a negligible ef-
fect on the results (Appendix S1).

3.3  |  Effect of river morphology on aquatic 
macroinvertebrates

The first two MDS axes explained 61.0% and 27.0% of the overall 
variation for a total of 88.0%. The mean volume and standard devia-
tion of n- dimensional hypervolumes were 0.65 ± 0.12, 0.70 ± 0.18, 
0.75 ± 0.12, 0.72 ± 0.12, 1.0.68 ± 0.15 for isolated pool, pool, back-
water, glide and riffle. The effect of mesohabitat on the mean vol-
ume was significant (F4143.7 = 3.13, p = 0.019). According to the post 
hoc test backwater had a significantly greater volume than the iso-
lated pool (p < 0.015), although this result could be an artefact of 
traits averaging (Appendix S1). The volume of the union of input hy-
pervolumes for each mesohabitat was similar (isolated pool = 1.37, 
pool = 1.38, backwater = 1.26, glide = 1.47 and riffle = 1.40). The 
mean occupancy rate was similar among mesohabitats, with isolated 
pool, pool, backwater, glide and riffle showing values of 0.47, 0.50, 
0.59, 0.49 and 0.49. Patterns obtained by averaging traits were simi-
lar to those obtained by resampling traits (Appendix S1).

Although mean occupancy rates did not highlight differences 
among mesohabitats, patterns of occupancy rates within the trait 
space differed among mesohabitats (Figure 4). The permutation test 
captured this pattern and showed that some mesohabitats had signifi-
cantly higher values than others according to their position in the trait 
space (Figure 5). The permutation test, thus, detected heterogeneity 
in trait space utilisation driven by river morphology even with a high 
degree of overlap in the input hypervolumes. The volume of the signif-
icant fraction was greater when comparing mesohabitats with differ-
ent hydraulic characteristics (Table 5). Traits averaging had a negligible 

TA B L E  3  Comparison of the results obtained with the subsample and the box methods. Two disjoint groups of 10 hypervolumes 
generated from n- dimensional hyperspheres with an increasing number of dimensions (from 2 to 5) were compared (sub = subsample 
method; box = box method). For each dimension multiple statistics are provided: (1) mean, minimum and maximum volumes of input 
hypervolumes; (2) the volume of the union of all hypervolumes (all) and the volumes of union of hypervolumes of the two groups (group 1 
and 2); (3) occupancy rates resulting from the union of all the hypervolumes and occupancy rates for the two group of hypervolumes and (4) 
the volume after permuting the labels of hypervolumes (not available without a grouping factor).

Measure Group 2_D_sub 2_D_box 3_D_sub 3_D_box 4_D_sub 4_D_box 5_D_sub 5_D_box

Input volume Mean 3.82 6.34 9.37 12.2

Min 3.75 6.11 9.02 11.9

Max 3.92 6.49 9.68 12.5

Volume All 8.36 8.49 13.6 14.7 20.4 23.9 27.7 35.7

Group 1 4.12 4.23 6.80 7.34 10.2 12.1 13.9 17.8

Group 2 4.24 4.27 6.82 7.34 10.2 11.9 13.9 18

Mean occupancy 
rate

All 0.46 0.45 0.47 0.43 0.46 0.39 0.44 0.34

Group 1 0.92 0.90 0.93 0.86 0.92 0.78 0.88 0.68

Group 2 0.91 0.90 0.93 0.87 0.92 0.78 0.88 0.68

Volume after 
permuting

All — — — — — — — — 

Group 1 3.97 4.00 6.58 6.49 9.87 9.77 13.2 12.5

Group 2 4.08 4.01 6.63 6.52 9.9 9.57 13.2 12.6

TA B L E  4  Results of different methods for estimating functional 
diversity, obtained from a trait space based on the body size of 
aquatic macroinvertebrates (mean volume = mean volume of the 
input hypervolumes; union volume = volume of the union of input 
hypervolumes). Four observations for each site were available 
(n = 40). Flow intermittence (period of time during the year with no 
or lack of flow) is also reported.

Site Intermittence
Mean 
volume

Union 
volume

Mean 
occupancy 
rate

T1 0.00 1.80 ± 0.02 2.04 0.88

T2 0.53 1.77 ± 0.06 2.03 0.87

T3 5.26 1.80 ± 0.01 2.01 0.90

T4 1.78 1.78 ± 0.03 2.00 0.88

T5 16.5 1.76 ± 0.04 2.04 0.86

T6 20.8 1.79 ± 0.04 2.00 0.89

T7 28.8 1.62 ± 0.16 2.11 0.77

T8 32.9 1.68 ± 0.11 2.08 0.81

T9 32.9 1.53 ± 0.35 2.08 0.74

T10 36.1 1.67 ± 0.14 2.12 0.79
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    |  9Functional EcologyLAINI et al.

effect on these results, indicating a strong effect of mesohabitat 
on flow velocity preferences of macroinvertebrates (Appendix S1). 
The only exception was for the comparison pool- backwater, which 
showed a great variability with the resampling approach.

4  |  DISCUSSION

N- dimensional hypervolumes represent a flexible and appealing ap-
proach for quantifying functional diversity. When analysing multiple 

overlapping hypervolumes, current methods show limitations be-
cause they do not consider heterogeneity in trait space utilisation 
emerging from the overlap effectively. To overcome these limita-
tions, we developed a new approach based on the occupancy rate 
concept, the mean or absolute number of hypervolumes that occupy 
a given region of a multidimensional space. With two examples based 
on aquatic macroinvertebrates, we showed how occupancy rates 
relate to environmental gradients and to among- group differences 
in trait space utilisation that in turn can be associated to relevant 
ecological processes such as environmental filtering and dispersal.

F I G U R E  3  Results of the occupancy rate framework applied to 40 hypervolumes to test the effect of flow intermittency on the body size 
of aquatic macroinvertebrates. Panel (a) shows taxa coordinates obtained with a metric MDS. Taxa in red are those that lies in areas with low 
occupancy rates of sites T7, T8, T9 and T10. Panel (b) visualises the occupancy rate of each studied site. Occupancy rate can range from 0 
to 1 and represent the mean number of hypervolumes enclosing a given random point (0 = no hypervolume within a site includes a random 
point, 1 = all the hypervolumes within a site include a given random point).

(a) (b)

F I G U R E  4  Occupancy rates of 
different mesohabitats calculated on a 
trait space based on the flow preferences 
of aquatic macroinvertebrates. Colours 
are proportional to the number of 
hypervolumes enclosing a random point. 
For each mesohabitat, the resulting 
hypervolume has been calculated from 
30 hypervolumes (for a total of 150 
hypervolumes). Values range from 0 (no 
hypervolume enclosing the random point) 
to 1 (all the hypervolumes of a given 
mesohabitat encloses the random point).
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10  |   Functional Ecology LAINI et al.

The newly developed approach showed good performance in de-
tecting expected patterns. This is especially true for the box method, 
which showed greater accuracy than the subsample method in most 
simulations. Drawbacks of the box method are increased computa-
tion times, occupancy rate estimates dependent on the box density 
and overestimation of volumes in higher dimensions. In our simula-
tions, the dependence of occupancy rate estimates to box density 
was not an issue, but in real case examples, we suggest testing more 

box densities to look for the best compromise between running time 
and accuracy. Overestimation is due to more random points de-
tected as unique to one or the other hypervolumes compared to the 
subsample method probably because points become sparser in the 
multidimensional space at higher dimensions. The subsample method 
showed poorer performances than the box method, likely because it 
returns a slightly non- uniform subsample of random points when the 
point density is very heterogeneous in the multidimensional space. 
However, this method could be a valuable alternative to the box 
method that can be used for exploratory analyses in high dimensions 
because of the decreased computation time. Some improvements to 
the basic subsample algorithm (not tested in the present work) are 
proposed in the hypervolume package (e.g. find_optimal_occupancy_
thin()). However, these solutions slow down computation times in 
higher dimensions and may have limited practical application in such 
cases.

In the first example, size- based metrics and mean occupancy 
rates calculated on a trait space based on the body size of aquatic 
macroinvertebrates were related to flow intermittence. These re-
sults confirm our hypothesis of a decrease in the stability of trait 
space utilisation with increasing intermittence values. The lack of 
surface water acts as an environmental filter that favours species 
with small body size, fast life cycles and more cycles per year, while 
filters out long- lived species with moderate to large body size (Arias- 
Real et al., 2022; Piano et al., 2020). Species with large body size, 
thus, disappear or become rare at the most intermittent sites, caus-
ing the occupancy rate to drop in certain regions of the trait space. 
The decrease in the occupancy rate results from two distinct pro-
cesses, the first being the paucity of species with similar body size 
while the second being the low detection probability of some species 
as measured from multiple measures at the same site. The paucity of 
species with similar body size is related to functional redundancy 

F I G U R E  5  Pairwise difference among mesohabitats calculated 
using the permutation test on occupancy rates performed on a trait 
space based on the flow preferences of aquatic macroinvertebrates. 
Differences in occupancy rates were obtained by calculating the 
difference between the occupancy rates of one hypervolume (e.g. 
backwater) and those of a second hypervolume (e.g. glide) for each 
random point. Values can range from 1 to −1, where positive values 
mean that the occupancy rates of the first hypervolume are higher 
than those of the second hypervolume while negative values mean 
the opposite. Colour intensity is proportional to the absolute value 
of the differences (colours are more intense for 1 and −1). Only 
significant differences were retained according to the permutation 
test.

TA B L E  5  Volume of the significant fraction of a trait space 
calculated on the flow preferences of aquatic macroinvertebrates 
for each pairwise comparison of mesohabitats (i_pool = isolated 
pools). The significant fraction represents the volume significantly 
occupied by a first (hv_1) or a second (hv_2) group of hypervolumes 
and is calculated using a permutation test on occupancy rates. Total 
volume is calculated as the sum of the results of hv_1 and hv_2.

hv_1 hv_2
hv_1 
volume

hv_2 
volume

Total 
volume

Pool Backwater 0.07 0.04 0.11

Pool Glide 0.22 0.34 0.56

Pool Riffle 0.38 0.39 0.77

Pool i_ pool 0.02 0.01 0.03

Backwater Glide 0.28 0.22 0.50

Backwater Riffle 0.49 0.47 0.96

Backwater i_ pool 0.30 0.14 0.44

Glide Riffle 0.18 0.29 0.47

Glide i_pool 0.32 0.31 0.63

Riffle i_pool 0.45 0.36 0.81
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    |  11Functional EcologyLAINI et al.

(species with the same or similar traits) within a single community 
(Carmona et al., 2016). The detection probability is linked to both the 
effect of imperfect detection and the effect of environmental vari-
ables (MacKenzie et al., 2002). A site with a species with low func-
tional redundancy and low detection probability is, thus, more prone 
to have low occupancy rates, at least in some regions of the trait 
space. The added value of the new approach, emerging from this 
first case study, is as an (i) easy- to- understand metric for evaluat-
ing the variation in the overlap of multiple hypervolumes in the trait 
space and (ii) the identification of species with low functional redun-
dancy and detectability when multiple observations are available.

The second example dealing with flow preferences of macro-
invertebrate communities also demonstrated the added value of 
our approach. Occupancy rates were helpful in showing that the 
investigated mesohabitats host communities with different flow 
preferences. Fast- flowing mesohabitats showed significantly higher 
occupancy rates in the right part of the trait space while the slow- 
flowing ones preferentially occupied the left side. Similarly to the 
example on intermittence, flow velocity can act as a filter that af-
fects the structure of macroinvertebrate communities. For example, 
organisms adapted to high flow velocity are disfavoured in slow- 
flowing mesohabitats. Although differences in flow preferences 
between fast and slow- flowing habitats are expected (Extence 
et al., 1999), we found differences in community preferences even 
within mesohabitat with similar hydraulic characteristics. This could 
be due to the drift of organisms from the fast- flowing mesohabitats 
to the slow- flowing ones when mesohabitats are connected within 
the main channel (e.g. from riffle to backwater) but not when they 
are isolated from one another (e.g. isolated pool). Proximity to fast- 
flowing mesohabitats can induce mass effect (Heino et al., 2017; 
Shmida & Wilson, 1985), whose detection can be masked when 
using binary outcomes (a random point is included or not in a given 
group of hypervolumes) instead of occupancy rates (that take into 
account the number of hypervolumes that enclose a given random 
point) on aggregated hypervolumes. Our approach can, thus, detect 
significant differences in trait space utilisation even with a high de-
gree of overlap of input hypervolumes.

Besides the benefits of evaluating ecological patterns, our ap-
proach presents some technical advantages. Although for sake of 
pedagogy both examples involved hypervolumes based on a two- 
dimensional trait space, our approach extends to n- dimensional hy-
pervolumes. Therefore, occupancy rates can be calculated on the 
trait space dimensionality that best suits specific case studies (e.g. 
after evaluating the functional space quality). Moreover, our ap-
proach allows less noisy comparisons of multiple hypervolumes than 
existing methods, thus avoiding multiplicative errors resulting from 
applying a pairwise approach multiple times.

5  |  CONCLUSIONS

Existing methods for quantifying functional diversity are limited be-
cause they do not exploit the information provided by the overlap 

of multiple hypervolumes effectively. Our framework complements 
these methods by providing a powerful tool to detect differences 
in trait space occupancy rate. This is especially useful when a high 
degree of overlap between groups of hypervolumes can mask un-
derlying ecological processes, for example, when studying the effect 
of invasive species on native communities or when analysing com-
munity assembly processes in different habitats.

Our approach can be technically and conceptually extended 
further. Although being developed to quantify among group differ-
ences in trait space occupancy rates, our approach can be modified 
to consider continuous variables. Furthermore, mean occupancy 
rates can be considered as a measure of within- group redundancy 
(Carmona et al., 2019; de Bello et al., 2007) and can be coupled with 
null model approaches for uncertainty estimation (Chen et al., 2023; 
Mammola et al., 2021). We hope that our newly developed frame-
work will contribute to test new hypotheses in functional ecology 
and to foster new developments in this expanding field of ecology.
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